Get help from the best in academic writing.

Solutions to Refugee Barriers to Education

Addressing the Needs of Refugees in Protracted Situations through Online Learning “UNESCO believes that education is a human right for all throughout life and that access must be matched by quality.” United Nations Educational, Scientific and Cultural Organization Social Justice in Educational Technology Within the discipline of Educational Technology, there has been a fairly recent call to attend to the need for social justice within this body of research (Selwyn, 2006). Previously, the trajectory focusing on social issues has often been the purview of other disciplines within the Social Sciences such as Sociology and Political Science. However, Selwyn (2006) encourages “critical” thinking about Educational Technology. He states, “the academic study of educational technology has grown to be dominated by an (often abstracted) interest in the processes of how people can learn with digital technology” (p. 66). He goes on to say that it is imperative that, “researchers and writers [should be] showing a keener interest in the social, political, economic, cultural and historical contexts within which educational technology use (and non-use) is located” (p. 66). While Selwyn’s claim was published over ten years from the writing of this text, the need has grown exponentially and the corpus of this important subject is anemic at best. Another more recent piece of research that addresses the need for social justice work within Educational Technology is by Gutiérrez and Jurow (2016). Using the framework of social design experimentation, the authors assert that there can be research that has the express purpose of promoting the needs of underserved populations. The key to this approach is that it uses educational principles and opportunities to serve the wider social and community issues as well as addressing the obstacles to equality and justice. Straight to the point, they argue, “what sets social design experimentation apart as an approach is that it seeks a design process that strives to be a part of the process of fundamental social transformation” (p. 566). The idea is also that underserved populations have their own paths through education based on the challenges of being a marginalized group as well as using this design to open up ways to work through these difficulties (Gutiérrez et al., 2016). Another principle as discussed by Gutiérrez et al. (2016) is that individuals – especially those that are the focus of social design experimentation – are part of a larger historical context. Understanding how their unequal place in society has shaped their lives, and how that knowledge can be used beneficially, uses inequity to solve the problem of itself (Gutiérrez et al., 2016). Higher Education in the Camps At the same time that there is a need for more attention to be paid to social justice within Educational Technology, there is a parallel educational crisis within the field of Sociology that deserves special attention. While refugee studies has a significant history, because of the increase of protracted refugee situations is a newer phenomenon (Zeus, 2011) and online learning is also a recent educational advancement, the confluence of e-learning in refugee encampments has seen few research studies. As of this date, there are no published studies that look at online learning for refugees in protracted situations within the discipline of Educational Technology or Online Learning. The few published studies have been in journals within the discipline of the sociological perspective of refugee situations, (Crea, 2016; Crea
To evaluate the effects of corruption on the Nigerian economy, we utilise the estimated size of the hidden economy (a proxy for corruption) in effect to Nigerian economy growth, (Salisu, 2006). A MIMIC is a structural econometric model for estimating an equation in which the dependent variable is unobservable (latent). (Frey
Drugs Affecting the Central Nervous System (CNS). Drugs acting in CNS were among the first to be discovered by primitive humans and are still the most widely used group of pharmacologic agents. In addition to their use in therapy, many drugs acting on the CNS are used without prescription to increase one’s sense of well being. The mechanism by which various drugs act in the CNS have not been clearly understood. In last three decades, however, dramatic advances have been made in the methodology of CNS pharmacology. It is now possible to study the action of a drug on individual cells and even single ion channels with synapses. The information obtained from such studies is on the basis for several major developments in studies of the CNS. These are the classification of CNS acting drugs. In addition to many medical uses, drugs acting on the cns are using worldwide i.e. alcohol, nicotine, caffeine with various degrees of societal controls due to production of addiction or dysfunctional behaviours. We know that CNS acting agents mainly exert their effects by modulation of synaptic transmission of information between neurons. These actions alter the electrical exciteability of nerve cells by changing the movement of chemical ions across nerve and neuron cell membrane. In general, these drugs ct on a receptor to directly or indirectly open or close ion channels in the cell membrane and thus make the nerve cell more exciteable with regard to its ability to send information. ION CHANNELS: The membrane of nerve cells contain two types of channels defined on the basis of the mechanism controlling their gating: voltage-gated and ligand-gated channels.Voltage gated channels see Table-1 are respond to changes in the membrane potential of the cell.In nerve cells, these channels are concentrated on the initial segment and the axon and are responsible for the fast action potential,which transmitthe signal from cell body to nerve terminal. There are many types of voltage-sensitive calcium and potassium channels on the cell body, dendrites and initial segment, which act on a much slower time scale and modulate the rate at which the neuron discharge. CHANNEL TYPE MODE OF TOXIN ACTION: Tetrodotoxin VOLTAGE-GATED: Blocks channel from outside MODE OF TOXIN ACTION: Betrachotoxin VOLTAGE-GATED: Slows inactivation MODE OF TOXIN ACTION: Apamin VOLTAGE-GATED: Blocks small Ca-activated K-channels MODE OF TOXIN ACTION: Agatoxin VOLTAGE-GATED: Blocks p-type channels MODE OF TOXIN ACTION: Omega-conotoxin VOLTAGE-GATED: Blocks n-type channels MODE OF TOXIN ACTION: Charybdotoxin VOLTAGE-GATED: Blocks big Ca-activated K-channels IDENTIFICATION OF CENTRAL NEUROTRANSMITTER: Because drug selectivity is based on the fact that different pathways use different transmitters, a primary goal of neuropharmacologists is to identify the transmitter in CNS pathways. Establishing that a chemical substance is a transmitter has been far more difficult for central synapses than for peripheral synapses. The following criteria have been established for transmitter identification: LOCALIZATION: Approaches prove that a suspected transmitter resides in the presynaptic terminal of the pathway uder study include biochemical analysis of regional concentrations of suspected transmitters and immunocutochemical techniques for enzymes and peptides. RELEASE: To determine whether the substance is released from a particular region, local collection of the extracellular fluid can sometimes be accomplished. In addition, slices of brain tissue can be electically or chemically stimulated in vitro and the released substances measured. To determine whether release is relevant to synaptic transmission, it is important to establish that the release is calcium-dependent. SYNAPTIC MIMICRY: Finally, application of the suspected substance should produce a response that mimics the action of the transmitter released by nerve stimulation. Furthermore, application of the selective antagonist should block the response. The excitatory neurotransmitter released from these cells is in most instances. The information is typically phasic and bursts of action potential. Microionophoresis, which permits highly localized drug administration, has been a valuable technique in assessing the action of suspected transmitter. Because of the complexity of the CNS, specific pharmacologic antagonism of a synaptic response provides a particular powerful technique for transmitter identification. DRUG CONCENTRATION AND INTESITY OF ITS EFFECTS: Intensity of pharmacological effect is given as, Intensity of effect= DRUGS ACTING UPON CNS: CAFFEINE: Caffeine and the chemically related xanthenes, theophylline and theobromine Decreases in the order given in their stimulatory action.They are over-the-counter drugs, used to block adenosine receptor as an antagonist. AMPHETAMINE: The stimulation caused by excessive release of norepinephrine from storage sites in the peripheral nervous system. It is not known whether the same action occurs in the CNS. Two other theories regarding for their action are that they are degraded slower than epinephrine or that they could act on serotonin receptor sites. NARCOTICS: Narcotic agents are potent and effective for the relief of severe pain. Analgesics are selective cns drug to reduce pain.Long term administration produces tolerance, pstchic and physical dependence. CENTRAL NERVOUS SYSTEM DEPRESSANTS AND STIMULANTS: CNS DEPRESSANTS: CNS depressants slows down normal brain functions. In higher doses, some CNS depressants can become general anesthetics. Tranquilizers and sedatives are example of CNS depressants. CNS depressants are based on two groups such as: CNS STIMULANTS: Stimulants increase alertness, attention and energy which are accompanied by increases in blood pressure rate and respiration. Stimulants were used to treat asthma and other respiratory problems, obesity, neurological disorder and a variety of other ailments. As their potential for abuse and addiction became apparent to wane. Now, stimulants are prescribed for treating only a few health conditions, include attention deficit hyperactivity disorder and depression that has not responded to other treatment. It is also used for short-term treatment of obesity and for patients of asthma. INTODUCTION TO SEDATIVE-HYPNOTIC: Interms of drugs, sedative refers to a substance that moderates the activity and excitement while inducing a calming effect, while hypnotic effect refers to a substance that causes drowsiness and facilitates the onset and maintenance of natural sleep. The term anxiolytic is sometimes applied to a sedative-hypnotic; however, be aware that many drugs especially the selective serotonin secretion reuptake inhibitors are useful as a chronic anxiolytic dug demonstrated by their efficacy in certain psychiatric disordres like generalized anxiety disorder. THERAPEUTIC EFFECTS OF SEDATIVE-HYPNOTICS: SEDATION: All drugs in this class produce sedation,, with relief of anxiety. Benzodiazepenes also exert anterograde amnesic effects (i.e the inhability to remember events occuring during the drug action ) at sedative doses. The amnesic action is a primary reason some benzodiazepenes ( i.e., midozam ) are commonly used for short duration invasive procedures. They donot provide pain relief however, and must be used in conjunction with analgesics. HYPNOSIS: Sedative-hypnotics promote sleep onset and increase the duration of sleep. All of the sedative-hypnotics will induce sleep if given in high enough dose. Rapid eye movement ( REM ) sleep stages are usually decreased at high doses. REM rebound can be detected following termination of sedative-hypnotics. ANESTHESIA: At high doses, sedative- hypnotic produce a loss of consciousness with amnesia at high level and a suppression of reflexes. Anesthsia can be produced by most barbiturates and some benzodiazepene, which is generally used frequently as a induction agent for general anesthesia. Only three, diazepam, midazolam and lorazepam are formulated I.V. ANTI-CONVULSANT AGENT: Most barbiturates and some benzodiazepene suppress seizures activity at high dose. However, often this occur along with marked sedation. Selective have anti-convulsant activity and can decrease the spread of epileptiform activity without CNS depression. Some are administered intravenously to treat status epilacticus. MUSCLE RELAXATION: Most sedative-hypnotics causes muscle relaxation at high doses. Diazepam is effective at sedative doses and is useful for treating specific spasticity state including cerebral palsy. TOLERANCE AND DEPENDENCE: TOLERANCE: Decreased responsiveness to a drug following repeated exposure commonly occurs with the continuous use of sedative-hypnotics. The mechanism of action of sedative-hypnotics are not well known. DEPENDENCE: Psychologicaaly dependence usually occurs wit h most of the sedative-hypnotics with leads to the compulsive use of these agents to reduce anxiety. Physical dependence is the development of withdrawal syndrome occurs when the drugs are discontinued. Withdrawal syndrome includes, tremors, hyper reflexia, and seizures. These symptoms occur most commonly with shorter acting drugs. EFECTS ON CNS WITH INCREASING DOSAGE: Calmness or drowsiness (sedation) Sleep (pharmacological hypnosis) Unconsciousness Coma Surgical anesthesia Fatal respiratory/ cardiac depression INTRODUCTION TO ANALGESICS: An analgesic also known as a painkiller is any member of the group of drugs used to relieve pain. Analgesic drugs act in various ways on the peripheral and central nervous system they include paracetamol and acetylaminophetol also known in the us as acetaaminophen, the NSAIDs such as the acetyl salicylic acid and opiods drugs such as morphine and opium. They are distinct from anesthesia who reversibly eliminate sensation. In choosing analgesics, the severity and response to the medication determines the pain ladder is originally developed in cancer-related pain is widely applied to find suitable drugs in a step wise manner. The choice is also determined by the type of pain, for neuropathic pain, traditional analgesics are less effective and there is often benefit from classes of drugs that are normally not considred analgesics such as tricyclic anti-depressants and anti-convulsants. WHAT IS PAIN ? Pain is physiological process that can be classified interms of its intensity ( mold, moderate, severe) its duration (acute, convulascent, chronic) its mechaism ( neurologic, nociceptive, physiologic) and its clinical context ( post surgical, malignancy) pain detection or nocicepter requires activation of specialized transducers called nociceptor, see Table-2, which are activating following thermal, mechanical or chemical tissue injury and initiate different transmission of action potential to the dorsal horn of spinal cord. Category: Physiological Cause: Brief exposure to a noxious stimulus Symptoms: Rapid, yet brief pain perception Example: Touching a pin or hot object Category: Nociceptive Cause: Somatic or visceral tissue injury with medication impacting on intact nervous system Symptoms: Moderate to severe pain, described as crushing, stabbing, usually worsen after the first 24 hours Example: Surgical pain, traumatic pain, sickel cell crisis Category: Neuropathic Cause: Damage of dysfunctional of peripheral nerves or CNS Symptoms: Severe lancinating, burning or electrical shock like pain Example: Neuropathy, chronic regional pain syndrome, postherpetic neuralgia Category: Mixed Cause: Combined somatic and nervous tissue injury Symptoms: Combination of symptoms, soft tissue pain and radicular pain Example: Low back pain, back surgery pain Analgesics are a class of drugs used to relief pain. The pain relief by analgesics occurs either by blocking pain signals or by interfering with the brain interpretation of the signalwithout producing anesthesia or loss of consciousness. There are basically two kinds of analgesics: KINDS OF ANALGESICS: It should be noted that some reference include aspirin and other non-steroidal anti inflammatory drugs (NSAIDs) in the class of analgesics because they have some analgesic properties. Aspirin and NSAIDs primarily have an anti-inflammatory affect, as opposed to being solely analgesic. NON-NARCOTIC ANALGESICS: Acetaminophen is the most commonly used over-the-counter, non-narcotic analgesic. Acetaminophen is a popular pain reliver because it is both effective for mild and moderate relief of pain and relatively inexpensive. It must be emphasized though that the safety of acetoaminophen is tied to proper use of the drug (use according to specific prescribed instructions). If acetoaminophen is not used according to the directions on the label, serious side effects and possible fatal consequences can occur. For example, taking more than 4000 mg/day or using it long term can increase the risk of liver damage. The risk of liver damage also increased by ingesting alcohol. Many people donot realize that acetoaminophen is found in more than 600 OTC. It can be found in combination with other active ingredients in many cold, sinus and cough medications. The commulative effect of acetaminophen must be considered if you are taking multiple drugs which contain acetaminophen. NARCOTIC ANALGESICS: There are two types of narcotic analgesics: The opiates (found in alkaloid, opium) The opioids (derivatives of opiates) Opiods are any medication which binds to opioid receptors in the CNS or gastrointestinal tract. There are four broad classes of opioids: Endogenous oopioids peptides (produced in the body: endorphins, dynorphins, enkephalins) Opium alkaloids (morphine, codeine, theibaine) Semi-synthetic opiods ( heroin, oxycodone, hydrocodone, dihydrocodeine, hydromorphone, oxymorphone) Fully synthetic opioids (pethidine, methadone, fentanyl, propoxyphene, buprenorphine) Opioids are used in medicine as strong analgesics, for relief of severe or chronic pain. There is no upper limit for the dosage of opioids used to achieve pain relief, but the dose must be increased gradually to allow for the development of tolerance to adverse effects ( for eg. Respiratory depression). According to emedicine: some people with intense pain get such high doses would be fatal if taken by someone who was not suffering from pain. PHARMACOLOGY OF SYSTEMIC ANALGESICS: Systemic administration of analgesic drugs is still the most widely used method for providing pain relief in acute painful situations. Opioids may be selected on the basis of their physicochemical characteristics and their diffusion index to the brain. But in clinical practice, their very steep concentration-analgesic effect relationship remains a critical aspect of opioid therapy. Thus, small fluctuations in plasma concentrations of opioids may lead to profound fluctuations in analgesic effect when their plasma and effect-site concentrations are near the minimum effective analgesic concentration (MEAC). Combining drugs acting on different mechanisms of nociceptive modulation offers benefits from additive/synergistic effects and will decrease the incidence of their adverse effects. Evidence-based reviews showed that effective pain relief using non-opioid analgesics relied on paracetamol supplemented with non-steroidal anti-inflammatory drugs (NSAIDs). The role of COX-2 selective inhibitors (CSIs) in acute pain relief still requires further evaluation. NSAIDs, CSIs and paracetamol share the property of morphine sparing in situations of severe (post-operative) pain. CSIs may be beneficial in patients in whom post-operative bleeding is a major surgical risk as the effects of NSAIDs on coagulation may last for days. Finally, low-dose ketamine infusions remain a worthwhile addition to opioid therapy. Analgesic concentrations of ketamine are 1/5th to 1/10th the anaesthetic concentration and exert significant inhibition on N-methyl-d-aspartate (NMDA) receptor activation. There have been debates over the additine potential of opioids vs. the benefits of their analgesic properties for treating non-malignant chronic pain such as chronic arthritis. Some experts believe opioiods can be taken for years without addiction or toxic side effects. The enhanced quality of life which opioids may provide the patient must considered. Common SIDE EFFECTS and ADVERSE REACTION: Nausea Vomiting Drowsiness Dry mouth Miosis (contraction of pupil) Urinary retention Constipation or fecal impaction Orthostatic hypotension Less common SIDE EFFECTS and ADVERSE REACTION: Confusion Hallucinaation Hives Itch Bradycardia Hypothermia Raised intracranial pressure Tachycardia Flushing Muscle rigidity Most severe SIDE EFFECTS and ADVERSE REACTION: Respiratory depression Fatal overdose INTRODUCTION TO ANTI-SEIZURES: After stroke, epilepsy is the second common disorder of CNS affecting about 1% of the population worldwide. Most (80% ) cases can be well controlled with anti-seizures drugs. However, that leaves many characterized by periods of abnormal firing of CNS neurons and can be caused by many neurological conditions (i.e. tumors, injury, infection). In some cases, there is also agenetic predisposition to epilepsy. Anti-seizures medication were originally designed to help people who have epilepsy, but the nerve-calming quality of some of these drugs can also help quiet the burning, stabbing or shooting pain often caused by nerve damage. Nerve damage (neuropathy) can be caused by many factors, including: DIABETES: High blood sugar levels, common in diabetes, can damage the nerves throughout the body, but the first symptomatically is numbnessand pain in the hands and feet. SHINGLES: Anyone who has had chicken pox is at risk of shingles a rash of blisters that can be painful or itchy. A condition called postherpetic neuralgia occurs if shingles pain persists after the rash disappears. Because the risk of shingles increases with age, evryone everyone everyone age 60 or older should receive the zoster vaccine which can help prevent this painful condition. CHEMOTHERAPY: Some chemotherapy drugs can damage nerves causing pain and numbness that typically begins in the tip of toes and fingers. HERNIATED DISK: Nerve damage can occur if a herniated in your spine squeezes a nerve passing through your vertebrae too tightly. INHERITED NEUROPATHIES: Some neuropathies are passed on genetically and affects different nerves, depending upon the type of disorder. The most common hereditary neuropathy is Charcot-Marie-Tooth disease which affects motor and sensory nerves. MECHANISMS OF ANTI-SEIZURE DRUGS: Exact mechanism of anti-seizues drugs are not well understood but tese medications appear to interfere with the over react transmission of pain signals sent from damaged nerves. Some anti-seizures work particularly well for certain conditions. Carbamazepine is prescribed for trigeminal neurolgia, a condition that causes facial painn appears as electrical shocks. It is important note that FDA has issued a warning that all anti-seizures associated with a slight increased risk of suicidal thoughts or actions. Talk to your doctor if you are experiencing feeling of depression or suicidal thoughts. GABAPENTIN: Used with other epilepsy drugs to treat partial and some generalized seizures. Few lasting side effects. During the first week of treatment, a person may experience tiredness and dizziness. PHENYTOIN: Controls partial seizures and generalized tonic-clonic seizure. Also can be given by intravenously in the hospital to rapid control active seizures. Side effects include dizziness, fatigue, acne, slurred speech, rash, and increase hair. Over the long term the drug can cause bone thinning. VALPROIC ACID: Used to treat partial, absence and generalized tonic-clonic seizures. Common side effects include dizziness, nausea, vomiting, tremor, hair loss, reduced attention, depression in adults, irritability in children, a decrease in thinking speed. Over the long term, the drug can cause bone thinning, swelling of the ankles, liver damage, decreased platelets. INTRODUCTION TO ANTI-PSYCHOTICS: A person who is psychic out of touch with the reality. People with psychosis may hear ‘voices’ or have strange and illogical ideas for eg, thinking that others can hear their thought or are trying to harm them or they are president o f us or some famous person. They may get excited or angry with no apparent reason, or spend lots of time by themselves or in bed, sleeping during the day and awake at night. The person may neglect appearance, not bathing or changing clothes, hard to talk to- barely talking or saying things that make non-sense. They often are initially unaware that their condition is an illness. These kinds of behavior are symptoms of a psychotic illness such as schizophrenia. Anti-psychotic drugs reduces these symptoms. These medications cannot cure the disease but they can take away many of the symptoms or make them mild. In some cases, they can shorten the course of episode of illness well. There are number of anti-psychotic medications available. These medications affect the neurotransmitter that allow communication between nerve cells. One such neurotransmitter, dopamine, is thought to be relevant to schizophrenia symptoms. All thes e medications have some effect for schizophrenia. The main differences are in their potency that is the dosage prescribed to produce therapeutic effect. Some people may think that thehigher doses of medication prescribed the more serious the illness but this is not always true. The 1990s saw the development of several new drugs for schizophrenia called ” atypical antipsychotics” because they have fewer side effects than the older drugs, today they are often called and used as afirst line of treatment. The first atypical antipsychotic drug was introduces in 1990. In clinical trials, these medications were found to be more effective than conventional or typical Antipsychotic drugs in individuals with treatment-resistant schizophrenia, that is not responded to other drugs and the risk of tardive dyskinesia ( a movement disorder was lower). However because of the potential side effects of serious blood disorder -agranulocytosis, white blood cells loss that fight infection. Patient who are on clozapine must have a blood test on every 1 or 2 weeks. The inconvenience and cost of blood tests and the medication itself have made maintenance for adults for many people. Several other atypical antipsychotics have been developed since clozapine was introduced. INDICATIONS OF ANTI-PSYCHOTIC DRUGS: Common conditions with which antipsychotics might be used include schizophrenia, bipolar disorder and delusional disorder. Antipsychotics might also be used to counter psychosis associated with a wide range of other diagnoses, such as psychotic depression. However, not all symptoms require heavy medication and hallucinations and delusions should only be treated if they distress the patient or produce dangerous behaviors. For non-psychotic disorders: In addition, “antipsychotics” are increasingly used to treat non-psychotic disorders. For example, they are sometimes used off-label to manage aspects of Tourette syndrome or autism spectrum disorders. They have multiple off-label uses as an augmentation agent (i.e. in addition to another medication), for example in “treatment-resistant” depression essive, anti-impulsive, anti-suicidal and hypnotic (sleep) medications. Antipsychotics have also been increasingly used off-label in cases of dementia in older people, and for various disorders and difficulties in children and teenagers. A survey of children with pervasive developmental disorder found that 16.5% were taking an antipsychotic drug, most commonly to alleviate mood and behavioral disturbances characterized by irritability, aggression, and agitation. Recently, risperidone was approved by the US FDA for the treatment of irritability in children and adolescents with autism. Antipsychotics are sometimes used as part of compulsory treatment via inpatient (hospital) commitment or outpatient commitment. This may involve various methods to persuade a person to take the medication, or actual physical force. Administration may rely on an injectable form of the drug rather than tablets. The injection may be of a long-lasting type known as a depot injection, usually applied at the top of the buttocks. Those that are available in injectable form are haloperidol, olanzapine, and ziprasidone while those available as depot are haloperidol, flupenthixol, clopenthixol, and risperidone. Antipsychotics are among the biggest selling and most profitable of all drugs, generating $22 billion in global sales in 2008. By 2003 in the US, an estimated 3.21 million patients received antipsychotics, worth an estimated $2.82 billion. Over 2/3 of prescriptions were for the newer more expensive atypicals, each costing on average $164 compared to $40 for the older types. By 2008, sales in the US reached $14.6 billion, the biggest selling drugs in the US by therapeutic class. The number of prescriptions for children and adolescents doubled to 4.4 million between 2003 and 2006, in part because of increases in diagnoses of bipolar disorder. Due to the chronic nature of the treated disorders, antipsychotic medications, once started, are seldom discontinued, and the aim of the treatment is often to gradually reduce dosage to a minimum safe maintenance dose that is enough to control the symptoms. Only when the side-effects have become too severe and/or a patient have been symptom-free for a long periods of discontinuation carefully attempted. MULTIPLE MEDICATIONS: Antipsychotic medications can produce unwanted effects when taken with other medications therefore, doctor should be told about all the medications being taken including over -the-counter medications and vitamin, mineral, and herbal supplements and the extent of alcohol use. Some antipsychotic interfere with anti-hypertensive drugs (taking for high blood pressure), anticonvulsants (taken for epilepsy) and medicine used for parkinson’s disease. Other anti-psychotic add to the effect of a alcohol and other CNS depressants such as anti-histamines, barbiturates, anti-depressants, some sleeping and pain medications and narcotics. OTHER EFFECTS: Long term treatment of schizophrenia with one of the older, or, ” conventional” antipsychotics may cause to develop tardiye dyskinesia. Tardiye dyskinesia is a condition characterized by involuntary movements, most often around the mouth. It may range from mild to severe. In some people, it cannot be reversed, while others recoverd partially or completely. Tardiye dyskinesia is sometimes in people with schizophrenia who have never been treated with an antipsychotic medications is called ” spontaneous dyskinesia” however, it is most often seen after long term treatment with older antipsychotic medications. The risk has been reduced with newer” atypical” medications. There is a higher incidence in women, and the risk increases with the age. The possible risks of long-term treatment with with an anti-psychotic medications must be weighed against the benefit in each case. The risk of TD is 5% per year with older medications. It is less with newer medications. PSYCHOTIC DISORDER CAUSES: Functional causes of psychosis include the following: Drug abuse amphetamines, cocaine, marijuana, http://en.wikipedia.org/wiki/Alcoholismalcohol among others. Brain damage Schizophrenia, schizophreniform disorder, schizoaffective disorder, brief psychotic disorder Bipolar disorder (manic depression) Severe clinical depression Severe psychosocial stress Sleep deprivation. Some traumatic events. DOSAGES AND SIDE EFFECTS: Some medications are very potent and prescribed in low doses, others are not as potent and higher doses are prescribed. Most side effects of antipsychotic drugs are mild. Many common ones lessens or disappear after the first week of treatment. these includes drowsiness, rapid heart beat and dizziness when posture changes. Some people may gain weight while taking medications and need to pay extra attention to diet or exercise to control their weight. All anti-psychotic drugs tend to block D2- receptors in the dopamine pathways of the brain. This means that dopamine released in these pathways has less effect. Excess release of dopamine in the mesolimbic pathway has been linked to psychotic experiences. It is the blockade of dopamine receptors in the pathway that is thought to control psychotic experience. Typical antipsychotic are not particularly selective and also block dopamine receptors in the mesolimbic pathway, tuberoinfundibular pathway and the nigrostriatal pathway. Blocking D2- receptor s in these pathway is thought to produce some of the unwanted effects which typical antipsychotics produce. LITHIUM, MOOD STABILIZING DRUGS, AND OTHER TREATMENT FOR BIPOLAR DISORDER: Bipolar disorder once known as manic-depressive illness, was conceived of as a psychotic disorder distinct from schizophrenia at the end of the 19th century. Before that both of these disorders were considered part of a continuum. It is ironic that the weight of the evidence today is that there is profound overlap in these disorders. This is not to say that there are no pathophysiology important difference or that some drugs treatment are differentially effective in these disorders. According to DSM, they are separate disease entities while research continues to define the dimensions of these illnesses and their genetic and other biological markers. TYPES OF BIPOLAR DISORDER There are several types of bipolar disorder. Each type is identified by the pattern of episodes of mania and depression. The treatment that is best for you may differ depending on the type of bipolar disorder you have. Your doctor will look carefully to determine where your symptoms fit. Bipolar I Disorder (mania and depression) – Bipolar I disorder is the classic form of the illness, as well as the most severe type of bipolar disorder. It is characterized by at least one manic episode or mixed episode. The vast majority o Drugs Affecting the Central Nervous System (CNS)

Comparative Analysis on Kikuyu

Comparative Analysis on Kikuyu within the SPE and Post-SPE Framework Term Paper for Foundations of Phonology Course Introduction This paper aims at observing the data set of Kikuyu language. Two frameworks are compared, i.e. the Sound Pattern of English (henceforth; SPE), and Post SPE (Autosegmental Phonology). Within the discussion, approaches form other theories will also be highlighted; however, the main point addressed in this paper is to evaluate the data set of Kikuyu on the basis of phonological theories within the two frameworks involved. Based on SPE theory, the lexical entries should consist of sufficient information for the phonological rules in order to identify its phonetic forms for each context. In other words, each lexical entry is entered as a set of phonological distinctive features. Furthermore, the underlying representation (UR) is considered as an abstract representation in comparison to a surface representation (SR). Along the paper, we will discuss both frameworks together with feature notations and then we will analyze the data set segmentally to obtain the rules governing the language of Kikuyu. In the next section, we will attempt to analyze the variability of the coordinated articulary apparatus with the spirit of the Post-SPE framework driven by a number of questions in the optimization of the data set analysis of with respect to the framework inquestion. During the analysis, we will not consider some basic requirements such as No Crossing Constraint and Linking Constraint in order to be consistent with the well-formedness condition of Post-SPE framework. Furthermore, we will also approach the so-called geometry of phonetic representations accompanied by sufficient examples to figure out any possible solution. One of the central issues addressed within this paper is the analysis on the shifting of nasal consonant with respect to the given data set. We will try to compare two theories in question and observe how those theories could account for the changes in the data set. At a later stage, we will see which theory casts better analysis of the given data than the other does. Some literatures will be considered especially those from the textbook of Phonological Theory: The Essential Readings by Goldsmith, J. such as The Sound Pattern of English by Chomsky, N. and Halle, M., among others, as well as relevant sources which might give us more information about the language of Kikuyu. Now, let us go through the analysis from the first framework, i.e. the SPE framework. The SPE Framework The SPE framework is believed to be the basis of Generative Phonology since theories within this framework were influenced by the views from generative linguistics. Chomsky and Halle (in Goldsmith, 1999 : 17-19) states that a speaker’s knowledge of his language consists of knowing the lexical items of the language and each lexical entry must contain specified features, which determine the phonetic form of the item in all contexts, i.e. the item’s phonological features. Furthermore, such phonological features are classificatory devices, they are binary, as are all other classificatory features in the lexicon, for the natural way of indicating whether or not an item belongs to a particular category is by means of binary features. There will be two levels of representations that will be discussed in the SPE framework; underlying representation (i.e. lexical or morphophonemic sequence) and the surface form (i.e. phonetic output form). Given the authors’ aim at maximizing the ‘simplicity’ of the grammar, it follows that underlying representations should be as abstract as possible and avoid redundant, or non-distinctive, features. Minimized underlying representations are indeed a requirement to ensure the generality of the overall linguistic system. Within this framework, we will analyze the data set on the language of Kikuyu in the spirit of morphological analysis, overview on any possible alternation within the dataset, as well as identifying the underlying representation (UR) from the given data set. Following this analysis, we will try to observe possible rules with feature notation of the given data in order to get a generalized rule ordering within the data set. For this analysis, we also refer to the International Phonetic Alphabet (IPA) chart, especially for the consonants chart and their features. Let us try to analyze the data set from the morphological analysis with the given data set below. The data set of Kikuyu is given below in table 1: Imperative—1 sg.Imperfect–English Meaning ßura——mbureet?——–‘lop off’ ßaara—–mbaareet?——-‘look at’ t?ma——nd?meet?——–‘cut’ toma——ndomeet?——–‘send’ reha——ndeheet?——–‘pay’ ru?a——ndu?eet?——–‘cook’ cina——??ineet?——–‘burn’ koma——?gomeet?——–‘sleep’ kera——?gereet?——–‘cross’ ?ora——?goreet?——–‘buy’ ?aja——?gajeet?——–‘divide’ From table 1, we can see that there are two forms to observe, the one being Imperative and the other being the 1-sg-Imperfect from data set of Kikuyu language, which is followed by its meaning in English. The table shows that for each given word, several letters remain unchanged, which is typed in Bold inside the word. Most of them seem to have a Vowel and Consonant order (VC) and a long vowel one (i.e. VVC) such as in ßaara. Furthermore, we can also see in the Imperative column in which all words are always ended with a, marked after a slash sign (-). Subsequently, the words in the first singular Imperfect column are always ended with an ‘eet?’, which is also separated by a slash (-). A complete data set analysis is given in table 2 below. Table 2 Imperative————-1 sg. Imperfect————English Translation ßur – a——————–mbur – eet?———————-‘lop off’ ßaar- a——————–mbaar- eet?———————-‘look at’ t?m – a——————–nd?m – eet?———————-‘cut’ tom – a——————–ndom – eet?———————-‘send’ reh – a——————–ndeh – eet?———————-‘pay’ ru? – a——————–ndu? – eet?———————-‘cook’ cin – a——————–??in – eet?———————-‘burn’ kom – a——————–?gom – eet?———————-‘sleep’ ker – a——————–?ger – eet?———————-‘cross’ ?or – a——————–?gor – eet?———————-‘buy’ ?aj – a——————–?gaj – eet?———————-‘divide’ From table 2, we can see that the unchanged letters, which are Bold typed above, are the stems or could be part of the stems of the word in underlying representation. Furthermore, we can also see suffixes, which indicate the Imperativeness or the given words that are signaled as the final letter ‘a’ at the final position of the word. From the regularity of the final letters ‘eet?’, we can say that the given words must be classified as suffixes indicating the 1 sg. Imperfect form of Kikuyu language. We will discuss the underlying forms of the morphemes regularity in a separate discussion in a later part. Now let us see the structure of the nasal sound which occurs before the stems. It is conceivable that an alternation is defined as a morpheme, which has two different sound shapes, which can be analyzed by a phonological process. From the data set of Kikuyu, the some alternations can be observed as indicated in the following table (see table 3). The alternations can be identified easily in that ß becomes b; t /r becomes d; c becomes ?; k / ? becomes g. Those alternations can be viewed as the alternations in the language of Kikuyu whose phonological process will be explored in rules. Table 3 Imperative————1 sg. Imperfect In a.b.ß————————-mb In c.d.t————————-nd In e.f.r————————-nd In g.c—————————?? In h. i. k———————–?g In j. k. ?———————–?g Furthermore, we can also see that a nasal consonant is inserted before the changed consonant, e.g. m; n; ? and ?, which suggests that the morphological process goes along with the phonological process. Such insertion shows us important points for the data set in the language of Kikuyu. We will discuss such phenomenon in greater concern in later part. However, there is one thing to say about this phenomenon in the insertion of nasal consonant in the 1 sg. Imperfect groups could be analyzed as certain prefixes embedded which might express the tense of a verb. Whenever the alternation is constructed in an opposite way, i.e. b becomes ß in data set, this lead to an ill formed construction. Such a case is also falsifiable from data h. and j. in which ?g would become k and ? respectively following the case. Therefore, we will consider the sequence of alternation as from Imperative to 1 sg. Imperfect. The reanalysis of the stems of both forms is illustrated in table 4 below. Both prefixes (nasals) and suffixes (- a and – eet?) are discarded in table 4 so that we can get the stem of each verb. Table 4. Imperative————–1 sg. Imperfect————–English Meaning ßur———————bur——————————-‘lop off’ ßaar——————–baar——————————‘look at’ t?m———————d?m——————————-‘cut’ tom———————dom——————————-‘send’ reh———————deh——————————-‘pay’ ruc———————du?——————————-‘cook’ cin———————?in——————————-‘burn’ kom———————gom——————————-‘sleep’ ker———————ger——————————-‘cross’ ?or———————gor——————————-‘buy’ ?aj———————gaj——————————-‘divide’ What we have observed so far indicates that phonological components are obtained by mapping from the underlying representation (UR) to the surface (phonetic) representation (SR). This mapping phenomenon can be observed by rewrite rules which will be discussed in a separate part. In other words, the data set of Kikuyu we have so far could be considered as the Surface Representation. In the following paragraphs, we attempt to identify the underlying representation of the Kikuyu language. As noted above, we have seen that the unchanged letters in table 2 could be analyzed as the stems or part of the stems of the words in the underlying representation. On the basis of minimization of the underlying representation we will attempt to rule in the consonant before the unchanged letters because it seems to be implausible to predict the consonants such as ß, t, r, c, k, ? by rule. Furthermore, we have also observed that the consonant ß can shift to b not the vice versa. Referring to the SPE theory, minimizing the underlying representation means that anything, which can be predicted by a rule, should be eliminated from the underlying representation. For instance, the shifting from ß to b can be viewed in table 4 which is exemplified by the shifting is from ßur to bur. Such process also applies to all other words in the data set. By definition, we could get something like /ßur/ to be the actual stem for underlying representation of the word, which means ‘lop off’ in Kikuyu. The stems in underlying representation in the data set are presented in table 5 below and the Underlying Representations for the Imperative and 1 sg. Imperfect are represented in table 6. Table 5 UR Stem English Meaning /ßur/ ‘lop off’ /ßaar/ ‘look at’ /t?m/ ‘cut’ /tom/ ‘send’ /reh/ ‘pay’ /ru?/ ‘cook’ /cin/ ‘burn’ /kom/ ‘sleep’ /ker/ ‘cross’ /?or/ ‘buy’ /?aj/ ‘divide’ Table 6 Imperative UR 1 sg. Imperfect UR English Meaning /ßur – a/ /Nas – bur -eet ‘lop off’ /ßaar – a/ /Nas – baar-eet ‘look at’ /t?m – a/ /Nas – d?m -eet ‘cut’ /tom – a/ /Nas – dom -eet ‘send’ /reh – a/ /Nas – deh -eet ‘pay’ /ru? – a/ /Nas – du? -eet ‘cook’ /cin – a/ /Nas – ?in -eet ‘burn’ /kom – a/ /Nas – gom -eet ‘sleep’ /ker – a/ /Nas – ger -eet ‘cross’ /?or – a/ /Nas – gor -eet ‘buy’ /?aj – a/ /Nas – gaj -eet ‘divide’ In the framework of SPE, we have been familiar with the terms such as abbreviatory conventions, conciseness, Minimize UR, Rule format and Evaluation measures, etc. They will be considered here under IPA consonant chart and feature table where relevant information is given in table 7 below: Table 7 (Imp = Imperative) (1sg = 1 sg. Imperfect) Group A (data a. b.) ß – bilabial fricative (Imp) b – bilabial plosive (1sg) m – bilabial nasal (1sg) Group B (data c. d. e. f.) t – alveolar plosive (Imp) r – alveolar fricative (Imp) d – alveolar plosive (1sg) n – alveolar nasal (1sg) Group C (data g.) c – palatal plosive (Imp) ? – palatal plosive (1sg) ? – palatal nasal (1sg) Group D (data h. i. j. k.) k – velar plosive (Imp) ? – velar fricative (Imp) g – velar plosive (1sg) ? – velar nasal (1sg) From the distribution in table 7, we can draw some important information in the surface level. In Imperative classification (Imp), we can observe that the fricatives are plosives whereas in (1sg) group, we only observe the plosives ones. This observation is helpful for arriving at the deduction that under certain environment, fricatives/plosives are interpreted as (à) plosives. Furthermore, within each group, we can identify that the same place of articulation is shared, i.e., bilabial / alveolar / palatal / velar. This observation will contribute to identify the relation between the changed consonants and the added nasal sound types. In the mean time, within each ‘1sg’ group, we can also observe that the nasal sound always precedes the plosive sound. This observation is useful for understanding whether the prefix [Nasal] functions are in a linear order. By applying the minimized major feature for these consonants, we can generate some crucial feature notations as noted below. 1. Fricatives [-son, cont] 2. Plosives [-son, -cont] 3. Nasals [ son, -cont] Therefore, now we can observe the assimilation of the feature [cont] in the course of transferring from fricatives to plosives and probably the dissimilation of the feature [son] between nasals and plosives. In order to satisfy the conditions of Minimize UR and the Evaluation measure, we could observe each sound in detail and add the feature [voice] where we can see that all plosives and nasals are [ voiced] as illustrated in table 8 below. Table 8 Features – consonant Features-place of articulation Group A (data a. b.) ß – [-son] [ cont] [ voiced] (Imp) [ ant] [-cor] b – [-son] [-cont] [ voiced] (1sg) [ ant] [-cor] m – [ son] [-cont] [ voiced] (1sg) [ ant] [-cor] Group B (data c. d. e. f.) t – [-son] [-cont] [-voiced] (Imp) [ ant] [ cor] r – [ son] [ cont] [ voiced] (Imp) [ ant] [ cor] d – [-son] [-cont] [ voiced] (1sg) [ ant] [ cor] n – [ son] [-cont] [ voiced] (1sg) [ ant] [ cor] Group C (data g.) c – [-son] [-cont] [-voiced] (Imp) [-ant] [ cor] ? – [-son] [-cont] [ voiced] (1sg) [-ant] [ cor] ? – [ son] [-cont] [ voiced] (1sg) [-ant] [ cor] Group D (data h. i. j. k.) k – [-son] [-cont] [-voiced] (Imp) [-ant] [-cor] ? – [-son] [ cont] [ voiced] (Imp) [-ant] [-cor] g – [-son] [-cont] [ voiced] (1sg) [-ant] [-cor] ? – [ son] [-cont] [ voiced] (1sg) [-ant] [-cor] From the features distribution above, we can observe several important generalizations. First, as we can see in the left column, consonants could adjust themselves to the nasal during the shifting to plosive by preserving [-cont] and [ voiced]. Then, the consonant r in Group B is the only consonant in Imp which has feature [ son], therefore, we have to shift it to become [-son] as well in the course of shifting to plosive. However, this is definitely not a kind of adjustment to the nasal since it is conceivable that all nasals are found to be [ son]. Second, in the right column, we can observe that the insertions of prefixing nasals adjust themselves to the consonants and become bilabial / alveolar / palatal / velar nasal respectively in place of articulation. Furthermore, we attempt to figure out the adjustments above as assimilation, as well as the “dis-adjustment” of r as dissimilation. In sum, we can obtain two important rules in the language in question. Rule A: [-cont] [ cons] à [ voice]/[ nas] ______ [-son] Such rule entails the adjustment of the consonants to the nasals. Under this rule, ß becomes b; t and r becomes d; c becomes ?; k and ? becomes g due to the prefixing nasal. Then, all fricatives become plosives as given the following rule. Rule B: [ nas] à [aPlace]/______[aPlace] In rule B, the same place of articulation is construed by the notation [aPlace] represents here. This rule signals the adjustment of the nasals to the consonants. By using this rule, nasal will become m whenever aPlace is bilabial; n whenever aPlace is alveolar; ? whenever aPlace is palatal and ? whenever aPlace is velar. The origin nasal in prefixing cannot be observed from the given data set. For instance, if it is [ nas, cor] then it should be a consonant ‘n’. Along the previous part, we have observed some ordering rules in the language of Kikuyu. Further in this part, we will try to figure out the ordering of the two rules we have mentioned in advance. Based on the SPE framework, we have seen that all morphological rules apply before all phonological rules. Although Kiparsky and many others believe the other way against this framework, we try to see whether this rule is indeed workable within the spirit of SPE framework. Here, the morphological rules are viewed as infix insertion, i.e. prefix /Nas/; suffix /-a/ and /-eet?/ in the given data set which will apply in the first place and the phonological rules given in Rule A and Rule B above will apply in the second place. Now the question turns to which phonological rule applies in first order, being Rule A or Rule B. Suppose we take examples in data d and e from the given data set. First, let us look at data d. it seems that we will not find any difference in data d with respect to the ordering of two rules and hence the result looks like the same. Then, try to compare with data e. Let see what happens. Table 9 Data d = from [toma] to [ndomeet?] If Rule A precedes Rule B Morphological Rule /Nas/ /tom/ /eet?/ =UR Rule A /Nas/ /dom/ /eet?/ Rule B /n/ /dom/ /eet?/ =SR If Rule B precedes Rule A Morphological Rule /Nas/ /tom/ /eet?/ =UR Rule B /n/ /tom/ /eet?/ Rule A /n/ /dom/ /eet?/ =SR Data e. from [reha] to [ndeheet?] If Rule A precedes Rule B Morphological Rule /Nas/ /reh/ /eet?/ =UR Rule A /Nas/ /deh/ /eet?/ Rule B /n/ /deh/ /eet?/ =SR If Rule B precedes Rule A Morphological Rule /Nas/ /reh/ /eet?/ =UR Rule B /n/ /reh/ /eet?/ Rule A /n/ /deh/ /eet?/ =SR As we can see above, the comparison between data d and e indicates the same thing for ordering of two rules as well. This suggests that the ordering of rules do not have something to do with the result. It further suggests that the nasals and the derived consonants could have a relatively strong connection with each other, i.e. one co-exists with the other. Within the SPE framework, the data set has been analyzed in the form of features of lexical individual segments. We tried to apply the rules we have and they seems to work well. This gives further indication that the SPE framework can be considered as effective tool in explaining the phenomenon in data set of Kikuyu language. However, it seems that the relationship between the two rules is not transparent. The reason for this might be the difficulty in generating the only one rule instead of two explaining such phenomenon in the SPE framework. The Post-SPE Framework Autosegmental phonology was introduced by John Goldsmith (1976) and re presented a great step forward in linguistic research. In the classical generative theory developed by Chomsky and Halle, phonological components were linear sequences of segments which themselves consisted of feature bundles. One of the downfalls of the SPE framework resided in the assumption that every segment had to correspond to exactly one feature specification and vice-versa (every feature specification had to correspond to exactly one segment). Consequently, many phonological phenomena (related to stress, lengthening, rhythm and intonation for instance) were left unexplained. SPE simply had no way of providing a proper account of prosodic phenomena. As stated by Goldsmith himself ((1999: p.137), “Autosegmental phonology constitutes a particular claim about the geometry of phonetic and phonological representations. it suggests that the phonetic representation is composed of a set of several simultaneous sequences of these segments, with certain elementary constraints on how the various levels of sequences can be interrelated or ‘associated’. The main innovation brought about by Post-SPE framework is the fact that supra segmental features, such as stress or tone, are no longer confined to exactly one segment but can be shared by two or more segments and vice-versa. Some features, while remaining associated with a segment, are now handled separately. Many phonological phenomena can then be analyzed in terms of a restructuring or reorganization of the autosegments in a representation. Different from the first section, here we will analyze the data set of Kikuyu within the Post-SPE framework, or also known as the Autosegmental Phonology but within this paper we rather use the term Post SPE just for the sake of easiness in comparison. In this section, we will also consider the use of the IPA chart and feature notations for the discussion in the Post-SPE framework. Also in this part we might still view some rules from SPE framework and will be reviewed in the spirit of Post-SPE framework. Phenomenon such as assimilation and dissimilation will be approached to address the problems we found in the data set of Kikuyu Language. Of course, other theories within the Post-SPE will also be introduced. Let us start our discussion with the identification of features and spreading in this framework. In this framework, features will be viewed as independent features of their segments in order for them to be represented as auto-segments. We can observe in the data set of Kikuyu language that a phonological process can influence more than one consonant at a time. This might lead us to review the data we had in table 3 where ß – mb; t – nd; r – nd; c – ??; k – ?g; ? – ?g, with the given two rules. We have mentioned earlier about assimilation in SPE, i.e. an alternation which copies a feature specification from the closest segment. Take Group A and Rule B as an example: [ nas]à [bila Place] / ______ [bila Place] Nà m / ______ ß / b In the Post-SPE framework, assimilation is identified as the spreading of features to the neighbouring X-slots. This means that an X-slot is associated with the two X-slots, resulting assimilation as illustrated below: NX NX mX |à¥|à¥| [ ant][ ant] [ ant] [-cor] [-cor] [-cor] For the sake of easiness, some tiers are excluded. Here, X represents the changed consonant in Kikuyu. The nasal is considered another X slot, which is marked as N. After spreading, we see that the two X-slots share the feature of [ ant] and [-cor]. The feature from the neighboring X-slot could be deleted after the course of spreading. The replacement of Rule A in the Post SPE framework is a bit more complicated than Rule B since deletion is involved. As for instance, consider Group A we have noted above, within the SPE framework, we will get the shifting below. [ cons]à [-cont] [ voice] [-son] / [ nas]______ ßà b / N______ Then, let us apply this within the Post SPE framework to analyze this phenomenon where we have two X-slots represent Nasal and Consonant respectively during the course of alternation. An example of shifting from Nß to Nb is given below. X X X X | | à | / [ son] [-son] [ son] [-son] [-cont] [ cont] [-cont] [-cont] [ voiced] [ voiced] [ voiced] [ voiced] For the sake of easiness, some tiers are reduced. We can see in the shifting process that [-son, voiced] features are preserved during the shifting and [ cont] feature becomes [-cont]. In the SPE framework, it is conceivable that morphological rules apply before phonological rules, so we have a Nasal slot before Consonant slot in 1 sg. Imperfect i

Share a recent example from business news about an external organizational challenge, how the company addressed it (internal factors), and what you would do differently.

online assignment help Share a recent example from business news about an external organizational challenge, how the company addressed it (internal factors), and what you would do differently.. I’m studying and need help with a Management question to help me learn.

The external environment of an organization comprises of all the entities that exist outside its boundary but have significant influence on its growth and survival. An organization has little or no control over its environment but needs to constantly monitor and adapt to these external changes.
Share a recent example from business news about an external organizational challenge, how the company addressed it (internal factors), and what you would do differently.
Submission Details:
Share a recent example from business news about an external organizational challenge, how the company addressed it (internal factors), and what you would do differently.

Methods of Research

Methods of Research. Help me study for my Psychology class. I’m stuck and don’t understand.

For your Methods of Research assignment, use the Capella library to locate a minimum of three peer-reviewed journal articles (published within the last 10 years) that discuss a biological psychology topic of interest to you. For example, you might be interested in:

Progression of reading ability in a child diagnosed with autism

You will be using these resources to help support a proposed research study of your choosing in Unit 7 and then applying what you learn in an assignment in Unit 9. Note that the assignments in this course build on one another. It is a good idea to look ahead to the assignments in Units 7 and 9 to begin to think about a topic you might be interested in researching. This is a good time to select articles for this assignment that will help support your ideas for the Unit 7 and Unit 9 assignments.
Submit your analysis of the articles you selected for this assignment in accordance with the criteria listed below:
Format your paper using the following headings, as well as the Methods of Research Template (linked in Resources):

Topic: Identify the topic and describe the search strategy used for locating articles for the review.
Article Analysis: For each article, analyze the articles using the headings below. Use appropriate in-text citations of the article, per current APA guidelines:

The research method(s) used in the articles reviewed.
Key variables in the hypothesis or phenomena of interest.
Description of how the hypothesis was supported (or not) and how questions were answered (or not).
Determination and explanation of whether the study was (or was not) conducted safely and ethically by the authors.

Summary:

Summary determination and explanation of whether the studies included in the review were (or were not) conducted safely and ethically by the authors. Substantiate your views with evidence from the studies.
With the topic you selected, decide which of the research methods you believe is the most appropriate to further study the problem. Explain why.

Paper Requirements

Number of Resources: 3–5 peer-reviewed journal articles.
Length: 5–7 pages.
Format: Formatted using the Methods of Research Template, linked in the Resources. Use current APA style and formatting.

Methods of Research

American College of California Business Administration Management Discussion

American College of California Business Administration Management Discussion.

I’m working on a business report and need support to help me learn.

am a trainer student (co-op) in a business company and the college gives us 4 questions to answer it every 2 weeks during my co-op course in the company(i should answer the same questions 5 times but in a different way) …. after the answers for the 4 questions 5 times i should to a report what i do in the co-op course and how it goes and what i do in the company (my major is finance and the company use SAP application
American College of California Business Administration Management Discussion