Get help from the best in academic writing.

Research project APA format

Research project APA format. I need help with a Writing question. All explanations and answers will be used to help me learn.

should be full 3 pages double spaced (not including title and references pages)
Don’t use complex words and don’t plagiarise!

The writer need to refer to the interview to write results. Please go through the assignment instructions very carefully before you working on this order. Please follow the essay format carefully which I posted. (title page, abstract, main body and conclusion).

You need to refer to the interview to write results. Please go through the assignment instructions very carefully before you working on this order. Please follow the essay format carefully which I posted. (title page, abstract, main body and conclusion).

The topic Which I choose is Parenting style and personality. I already wrote a interview. Please refer to the interview to write results and follow the instructions. Please focus more on the main body part. The format need include (title page, abstract, main body and conclusion) which I posted instructions

Do not write too complex。Use sone simple words。This is high school assignment

Research project APA format

action plan.

Administrative SystemsHealthcare computerized systems can provide administrative functions in the areas of scheduling, admissions, billing, accounting, and human resource management. These systems are used to support the management functions and general operations of the health care organization. Central to the implementation of any administrative computerized system is the readiness of the healthcare organization to address training requirements to ensure patient confidentiality as required by the HIPAA privacy and security standards. In this assignment you will create an action plan to implement training to ensure compliance with these HIPAA standards. Your training action plan will be specific to one of the administrative healthcare systems noted below.Review the article “How to Create an Effective Action Plan”.Choose one of the administrative healthcare systems below and research the basic functions and purposes of the system.ChargemasterRevenue cycle management (RCM) solutions from GE HealthcareNextGen Practice ManagementNextGen EDI ServicesTeleTrackingAPI HealthcareArcadia Health Care SolutionsRGISIn your Action Plan:Describe the function and purpose of the administrative system selected.Review the HIMSS Security risk assessment guide/data collection matrix.Identify the HIPAA privacy and security concerns specific to your selected system.Address at least five HIPAA privacy and security concerns specific to your selected system.Describe your plan for archiving and retrieving health information in case of a natural disaster.Describe how you will address the information security training requirements for the product you selected.Your Paper:Must be two to three double-spaced pages in length, excluding the title and reference pages, and formatted according to APA style as outlined in the Ashford Writing Center.Must include a title page with the following:Title of paperStudent’s nameCourse name and numberInstructor’s nameDate submittedMust begin with an introductory paragraph that explains the importance of using administrative systems in health care.Include a minimum of two scholarly references, formatted in APA format as outlined in the Ashford Writing Center. Your two references cannot be any textbooks or reading cited in this course.Must end with a conclusion that explains what you learned in this assignment
action plan

Food Waste Reduction As A Challenge In Supply Chain Management Journal Review.

As you read the journal articles for this course, remember the context of the MBA degree. The MBA is a practitioner’s degree. The degree signifies that you can think, analyze, solve problems; and then communicate solutions to business executives effectively and efficiently. Your analysis of the discussion in the articles, their relationship to this course, and implications related to the each reading assignment will prepare you to communicate in this manner. The Assignment: In each assigned module/week, you will choose 1 journal article from those provided in the course and write a Journal Article Review of at least 900 words, not including the title page or reference page. For each Journal Article Review, you must discuss how the theoretical model or treatment described in the article compares to the information discussed in your textbook. No more than 20% of each Journal Article Review may be quotations. You must reference the original article and the course textbook. Each Journal Article Review must include these sections: Title page Article caption at top of first page of text (current APA style) to identify the article Statement of the author’s purpose Application of supply chain management theory relevant to article Background of the issue Managerial implications (2–3 paragraphs) Summary References (Current APA style)Use a minimum of 4 scholarly referencesCriteriaLevels of AchievementContent 70%AdvancedScholarly Research and Length16 to 17 pointsObvious and intensive scholarly research with 900 words in total submittedAuthor’s Purpose12 to 13 pointsAuthor’s purpose is clear and detailed with 100 words submittedBackground of the Issue12 to 13 pointsBackground of the issue is discussed in strong detail with 175 words submittedApplication of Supply Chain Management (SCM) Theory12 to 13 pointsStrong application of SCM theory with 175 words submittedManagerial Implications18 to 20 points350 or more words of direct advice to managers offeredSummary11 to 12 points100 or more words that concisely summarize article submittedStructure 30%AdvancedTitle Page, Immediate Article Identification, References page18 to 20 pointsTitle and references pages complete and properly formatted, article reviewed is immediately identifiedAPA Formatting10 pointsFew to no APA errors presentGrammar and Spelling7 pointsFew to no spelling/grammatical errors present
Food Waste Reduction As A Challenge In Supply Chain Management Journal Review

Liberty University Leaders from The Bible Research Paper.

Research Paper – Leaders from the Bible Instructions Overview You will select a leader from the Bible and will research that leader’s life and the way that God used him/her to provide leadership. This is not a biographical study of a biblical character; rather, it is a research study on the leadership demonstrated by a particular figure from the Bible. You must consider the major leadership categories that the class has studied: 1) personal attributes of leadership; 2) interpersonal leadership 3) contextual leadership, and 4) contemporary leadership. Additional theories and concepts related to this course including emotional intelligence can be incorporated in this paper, however, this primary focus should not be on servant leadership since that was considered in a previous course. You will be required to write a minimum of 2,000 words (not including the title page, abstract page, or reference page) researching and discussing your chosen leader by exploring the interpersonal dynamics and the context in which leadership was exercised. What insights might one gain by reflecting on contemporary leadership theory? Was the leader a transformational leader or a servant leader? Specifics: Minimum of 2,000 words (8 pages) not including the title page, abstract page, or reference page. Current APA format is required. APA 7th addition The student must use not less than 8 references including the Bible and leadership resources (course text, articles, and other scholarly resources that address leadership principles should be incorporated). The paper must be written as a research paper that includes an introduction that defines the traits of the chosen leader, and a content section that explores the dynamics relationships with followers, and applies insights from leadership theory to better understand the leadership process with the context of biblical history. The paper must end with a conclusion that reflects on the lessons learned and the insights gained from your research. Your conclusion must also offer suggestions for further study. You may select from the provided list of leaders from the Bible. If you wish to study a biblical character not on the list, you must contact your instructor for permission. You must make certain there is sufficient information on that person to complete your research project. Suggestion List for Biblical Characters (See note above about requesting other leaders): Old Testament: Abraham, Moses, Miriam, Aaron, Joshua, Gideon, Deborah, Samson, Job, Saul, David, Solomon, Nehemiah, Ruth, Samuel, Hannah, Esther, Josiah, Noah, and Daniel New Testament: Jesus, Peter, John, Paul, Luke, Stephen, James, Silas, Philip, Mary, Martha, Barnabas, Cornelius, Lydia, Dorcas, Priscilla, Thomas, Judas, John Mark, and Timothy.
Liberty University Leaders from The Bible Research Paper

Innovation and Change: Chapter Review Questions (2- 2.5 pages) Management

Innovation and Change: Chapter Review Questions (2- 2.5 pages) Management.

I need to answer these review question as essay NO refrences neededPART 11) Explain why innovation matters to companies.2) Discuss the different methods that managers can use to effectively manage innovation in their organizations.3) How can companies create creative work environments?4) What is the difference between incremental change and discontinuous change?5) Discuss why not changing can lead to organizational decline.6) How do change forces work to bring about change? How do resistance forces work against change forces?7) How can companies manage resistance to change?8) What mistakes do managers commonly make when leading change?9)Discuss the different methods that managers can use to better manage change as it occurs.PART 2“Change Agents.” Go to the website of Patti Hathaway, “the change agent,” at http://www.thechangeagent.com.This is a commercial website that introduces Patti Hathaway as a motivational speaker who can (for a fee) come to a company and help make change work.1) What exactly does Ms. Hathaway do to accomplish this?2) What are her qualifications?3) What are some of the products and services she offers?4) Can an outside consultant such as Patti really incite and implement change in an organization? Why or why not?
Innovation and Change: Chapter Review Questions (2- 2.5 pages) Management

Cryptographic Techniques For Network Security Cryptography Computer Science Essay

help writing The rapid growth of electronic communication means that issues in information security are of increasing practical importance. Message exchanged over worldwide publicly accessible computer networks must be kept confidential and protected against manipulation. Cryptography provides solutions to all these problems. Cryptography, a word with Greek origins means “secret writing”. We use the term to refer to the science and art of transforming messages to make them secure and immune to attacks. Cryptography is the practice and study of hiding information. In modern times, cryptography is considered to be a branch of both mathematics and computer science, and is affiliated closely with information theory, computer security, and engineering. Cryptography is used in applications present in technologically advanced societies; examples include the security of ATM cards, computer passwords, electronic commerce, which all depend on cryptography. SECURITY GOALS Availability Integrity Confidentiality Security goals CONFIDENTIALITY Confidentiality is probably the most common aspect of information security. We need to protect our confidential information. An organization need to guard those malicious actions that endanger the confidentiality of its information. In the military, concealment of sensitive information is the major concern. In industry, hiding some information from competitors is crucial to the operation of the organization. In banking, customers account need to be kept secret. Confidentiality not only applies to the storage of the information, it also applies to the transmission of information. When we send a piece of information to be stored in a remote computer or when we retrieve a piece of information from a computer, we need to conceal it during transmission. INTEGRITY Information needs to be changed constantly. In a blank, when a customer deposits or with draws money, the balance of her account needs to be changed. Integrity means that changes need to be done only by authorized entities and through authorised mechanisms. Integrity violation is not necessary the result of a malicious act; an interruption in the system, such as a power surge, may also create unwanted changes in some information. AVAILABILITY The third component of information security is availability. The information created and stored by an organization needs to be available to authorized entities. Information is useless if it is not available. Information needs to be constantly changed. Which means it must be accessible to authorised entities. The unavailability of information is just as harmful for an organization as the lack of confidentiality or integrity. Imagine what would happen to a bank if the customers could not access their accounts for transactions. SECURITY SERVICES It is easy to relate one or more of these services to one or more of the security goals. It is easy to see that these services have been designed to prevent the security attacks that we have mentioned. Data confidentiality It is designed to protect data from disclosure attack. The service as defined by X.800 is very broad and encompasses confidentiality of the whole message or part of a message and also protection against traffic analysis. That is, it is designed to prevent snooping and traffic analysis attack. Data integrity It is designed to protect data from the modification, insertion, deletion, and replaying by an adversary. It may protect the whole message or part of the message. Authentication This service provides the authentication of the party at the other end of the line. In connection oriented communication, it provides authentication of the sender or receiver during the connection establishment. In connectionless communication, it authenticates the source of the data. Non repudiation Non repudiation services protects against repudiation by either the sender or the receiver of the data. In non repudiation with proof of the origin, the receiver of the data can later prove the identity of the sender if denied. In non repudiation with proof of delivery, the sender of data can later prove that data were delivered to the intended to the intended recipient. Access control It provides protection against unauthorised access to data. The term access in this definition is very broad and can involve reading, writing, modifying, executing programs, and so on. CRYPTOGRAPHIC TECHNIQUES SYMMETRIC KEY ENCRYPTION It is also called as secret key cryptography is a cryptographic technique where the two parties share a secret key. Data are encrypted and decrypted using the same key. The sender encrypts data using the key. Once transmitted, the receiver should use the same key to interpret the message. C:UsersmadhuDesktopsyymm.PNG Figure 1. Symmetric encryption algorithm Symmetric encryption is computationally fast, meaning that it can occur in real time on content that is unknown previously. All securely transmitted live traffic today is encrypted using symmetric encryption algorithms for example such as live telephone conversation, streaming video transmission, high speed data link. Asymmetric Key Encryption In asymmetric key encryption, different keys are used for encrypting and decrypting a message. The asymmetric key algorithms that are most useful are those in which neither key can be made public while the other is kept secure. There are some distinct advantages to this public-key-private-key arrangement, often referred to as public key cryptography; the necessity of distributing secret keys to a large numbers of users is eliminated. And the algorithm can be used for authentications as well as for cryptography. Asymmetric cipher algorithms are based on heavy mathematical operations, thus they are not efficient at processing large blocks of data. They are often used to safely exchange small session keys. C:UsersmadhuDesktopasymm.PNG Figure 2: Asymmetric Encryption Algorithm Cryptanalysis As cryptography is the science and art of creating secret codes, cryptanalysis is the science and art of breaking those codes. In addition to studying cryptography techniques, we also need to study cryptanalysis techniques. This is needed, not to break other people’s codes, but to learn how vulnerable our cryptosystem is. The study of cryptanalysis helps us create better secret codes. There are four common types of cryptanalysis attacks Cryptanalysis attack Chosen ciphertext Chosen plaintext Known plaintext Ciphertext only Figure 4: cryptanalysis attacks Ciphertext Only Attack In ciphertext only attack, Eve has access to only some cipher text. She tries to find out the corresponding key and the plain text. The assumption is that Eve knows the algorithm and can intercept the cipher text. The cipher text only attack is the most probable one because Eve needs only the cipher text for this attack. To thwart the decryption of a message by an adversary, a cipher must be very resisting to this type of attack. Various methods can be used in ciphertext only attack. Brute force attack In the brute force method or exhaustive key search method, Eve tries to use all possible keys. We assume that Eve knows the algorithm and knows the key domain. Using the intercepted cipher, Eve decrypts the cipher text with every possible key until the plain text makes sense. Using brute force attack was a difficult task in the past; it is easier today using a computer. To prevent this type of attack, the number of possible keys must be very large. Statistical attack The cryptanalyst can benefit from some inherent characteristics of the plain text language to launch a statistical attack. For example we know that the letter E is the most frequently used letter in English text. The cryptanalyst finds the mostly used character in the cipher text and assumes that the corresponding plain text character is E. After finding a few pairs, the analyst can find the key and use it to decrypt the message. To prevent this type of attack, the cipher should hide the characteristics of the language. Pattern attack Some ciphers may hide the characteristics of the language, but may create some patterns in the ciphertext. A cryptanalyst may use a pattern attack to break the cipher. Therefore, it is important to use the ciphers that make the ciphertext look as random as possible. Known Plaintext Attack In a known plaintext attack, Eve has access to some plain or ciphertext pairs in addition to the intercepted ciphertext that Eve wants to break. The plain or ciphertext pairs have been collected earlier. Alice has sent a secret message to bob, but Alice later made the contents of the message public. Eve has kept both the cipher and the plaintext to use them to break the next secret message from Alice to Bob, assuming that Alice has not changed her key. Eve uses the relationship between the previous pair to analyze the current ciphertext. The same methods used in the ciphertext-only attack can be applied here. This attack is easier to implement because Eve has more information to us for analysis. However, it is less likely to happen because Alice may have changed her key or may have not disclosed the contents of any previous messages. Chosen Plaintext Attack The chosen plaintext attack is similar to the known plaintext attack, but the plaintext or ciphertext pairs have been chosen by the attacker. This can happen, for example, if Eve has access to Alice computer. She can choose some plaintext and intercept the created ciphertext. Of course, she does not have the key because the key is normally embedded in the software used by the sender. This type of attack is much easier to implement, but it is much less likely to happen. Chosen Ciphertext Attack The chosen ciphertext attack is similar to the chosen plaintext attack, except that the Eve chooses some ciphertext and decrypts it to form a ciphertext or plaintext pair. This can happen if Eve has access to Bob’s computer. TRADITIONAL CIPHERS We can divide traditional symmetric key ciphers into two broad categories substitution ciphers and transposition ciphers. In a substitution cipher, we replace one symbol in the cipher text with another symbol; in a transposition cipher, we reorder the position of symbols in the plaintext. Substitution ciphers A substitution cipher replaces one symbol with another. If the symbols in the plaintext are alphabetic characters, we replace one character with another. For example, we can replace letter A with letter D, and letter T with letter Z. If the symbols are digits (0 to 9), we can replace 3 with 7, and 2 with 6. Substitution ciphers can be categorized as either monoalphabetic ciphers or polyalphabetic ciphers. Monoalphabetic ciphers We first discuss a group of substitution ciphers called the monoalphabetic ciphers. In monoalphabetic substitution, a character in the plaintext is always changed to the same character in the ciphertext regardless of its position in the text. For example, if the algorithm says that letter A in the plaintext is changed to letter D. In other words, the relationship between letters in the plaintext and the ciphertext is one to one. Example: we use lowercase character to show the plaintext; we use the uppercase characters to show the ciphertext. The cipher is probably the monoalphabetic because both 1’s are encrypted as 0’s. Plaintext: hello ciphertext: khoor Caesar cipher Caesar cipher is a special case of substitution techniques wherein each alphabet in a message is replaced by an alphabet three places down the line. Caesar cipher is susceptible to a statistical ciphertext only attack. Julius Caesar used this additive cipher to communicate with his officers. For this reason additive ciphers are referred as Caesar cipher. Caesar cipher used a key of 3 for his communications. P a b c d e f g h i j k l m n o p q r s t u C A B C D E F G H I J K L M N O P Q R S T U V 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 v w x y z V W X Y Z 21 22 23 24 25 For example: let the message “hello” is encrypted with the key of 15. Then all the characters in the ciphertext will be shifted from 15. Then the answer is hello= WTAAD Mathematically C (ciphertext) = (P K) mod 26 (K= key) P (plaintext) = (C-K) mod 26 To encrypt message “hello” Plaintext ‘h’= 7 encryption (7 15)mod 26 C= 22=> W Plaintext ‘e’= 4 encryption (4 15)mod 26 C= 19=> T To decrypt “WTAAD” Ciphertext W=22 decryption (22-15)mod 26 P= 7=>h Ciphertext T=19 decryption (19-15)mod 26 p= 4=>e Cryptanalysis Caesar ciphers are vulnerable to ciphertext only attacks using exhaustive key searches (brute force attack). The key domain of the Caesar cipher is very small; there are only 26 keys. However, one of the keys, zero, is useless (the ciphertext is same as the plaintext). This leaves only 25 possible keys. Eve can easily launch a brute force attack on the ciphertext. Caesar cipher using cryptool Working the same example using cryptool, first of all, to acquaint ourselves with the Caesar encryption algorithm we will open a document, encrypt it and then decrypt it again. We will then try to get the computer to work out the key with which a plaintext is encrypted. This plaintext document is encrypted using the Caesar encryption algorithm by selecting the menu crypt/decrypt. C:UsersmadhuDesktopcaseaer 5.PNG Then the following dialog box appears. The key we enter is the number 15. Additionally, we change the options how to interpret the alphabet characters. The first alphabet character is set to 1 (if we set the character to 0 and use A as key, then the resulting ciphertext is the same as the plaintext). C:UsersmadhuDesktopcaesar 3.PNG Clicking on the Encrypt button opens a new window that contains the encrypted text. It becomes apparent that the letters have been shifted by 15 positions. So the word ‘hello’, is now ‘wtaad’ C:UsersmadhuDesktopcaeser 6.PNG The plaintext version of this encrypted document can now be obtained by selecting crypt/decrypt again. In this dialog box which appears we now enter the key with which the document was encrypted (15). This time it has to be decrypted so decrypt button must be selected. Now the next step is to find the key using cryptanalysis. The plaintext window is made active by clicking on it. Now the entropy is selected via the menu selection Analysis/General/Entropy) C:UsersmadhuDesktopentropy.PNG Now the frequency distribution of the letters is calculated. The histogram of the encrypted document letter frequencies have been shifted by 15 positions. That means the encryption algorithm is not secure. Moreover Z shifts the text by 26 positions so that the “encrypted” text is actually identical with the unencrypted text. Hence there are really only 25 keys. The Caesar encryption algorithm can be broken easily by a ciphertext only attack. To perform such an attack, restore the window containing the encrypted text to the window and select Analysis/ciphertext only/ Caesar. The text will automatically be analyzed. By analyzing the superposition it is possible to discover the key which was used to encrypt this document. In this case it was the letter P. When the decrypt button is clicked the plaintext appears, i.e. the text that has been decrypted with the key ‘p’ that was discovered. So the cryptool successfully found the key with which the document has been encrypted. C:UsersmadhuDesktopcaesar 8.PNG Analysis of Caesar Cipher Advantages Very easy to use The encryption and decryption can be done very quickly Disadvantages The encryption and decryption algorithms are known There are only 25 keys to try The language of the plaintext is known and easily recognizable. Applications It was used biblical times can be found on the back of ‘Mezuzah’ where it encrypts the name of the god. During the First World War the Russian army used this method to relay messages to troops. It is used as an application in the Android version 1.4.0 Polyalphabetic Cipher In polyalphabetic substitution, each occurrence of a character may have a different substitute. The relationship between characters in the plaintext to a character in the ciphertext is one-to-many. For example, “a” could be enciphered as “D” in the beginning of the text, but as “N” at the middle. Polyalphabetic ciphers have the advantage of hiding the letter frequency of the underlying language. Eve cannot use single letter frequency statistic to break the ciphertext. To create a polyalphabetic cipher, we need to make each ciphertext character dependent on both the corresponding plaintext character and the position of the plaintext character in the message. This implies that our key should be stream of subkeys, in which each subkey depends somehow on the position of the plaintext character that uses that subkey for encipherment. In other words, we need to have a key stream k= (k1,k2,k3…….) in which ki is used to encipher the ith character in the plaintext to create the ith character in the ciphertext. Playfair Cipher Playfair cipher is the example of polyalphabetic cipher. The secret key in this cipher is made of 25 alphabet letters arranged in a 5×5 matrix (letters I and J are considered the same when encrypting). Different arrangements of the letters in the matrix can create many different secret keys. One of the possible arrangements is shown below L G D B A Q M H E C U R N I/J F X V S O K Z Y W T P Before encryption, if the two letters in a pair are the same, a bogus letter is inserted to separate them. After inserting bogus letters, if the number of characters in the plaintext is odd, one extra bogus character is added at the end to make the number of characters even. The cipher uses three rules for encryption If the two letters in a pair are located in the same row of the secret key, the corresponding encrypted character for each letter is the next letter to the right in the same row (with wrapping to the beginning of the row if the plaintext letter is the last character in the row). If the two letters in a pair are located in the same row of the secret key, the corresponding encrypted character for each letter is the letter beneath it in the same column (with wrapping to the beginning of the column if the plaintext letter is the last character in the column). If the two letters in a pair are not in the same row or column of the secret, the corresponding encrypted for each letter is a letter that is in its own row but in the same column as the other letter. The playfair cipher meets the criteria for a polyalphabetic cipher. The key is a stream of subkeys in which the subkeys are created two at a time. In playfair cipher, the key stream and the cipher stream are the same. This means that the above mentioned rules can be thought of as the rules for creating the key stream. The encryption algorithm takes a pair of characters from plaintext and creates a pair of subkeys by following the above mentioned rules. We can say that the key stream depends on the position of the character in the plaintext. Position dependency has a different interpretation here the subkey for each plaintext character depends on the next previously neighbour. If P= P1, P2, P3……… C= C1, C2, C3……. K= [(k1, k2), (k3, k4) …] Encryption: Ci = ki Decryption: Pi = ki Example: keyword is PLAYFAIR P L A Y F I R E X M B C D G H J K N O S T U V W Z ENCRYPT: “hide the gold underground” plaintext HI DE TH EG OL DU ND ER GR OU ND ciphertext BM ND ZB XD KY CV VN XE CX KW VN DECRYPT: DMYRYKEVGHWGNGPXM ciphertext DM YR YK EV GH WG NG GP XM plaintext HE LX LO AN DG OX OD BY EX Message: Hello and Goodbye. Cryptanalysis of a Playfair Cipher Brute force attack on a playfair cipher is very difficult. The size of the key domain is 25! (Factorial 25). In addition, the encipherment hides the single letter frequency of the characters. However, the frequencies of diagrams are preserved. So a cryptanalyst can use a ciphertext-only attack based on the diagram frequency test to find a key. Analysis of playfair Advantages The main advantage of the system is it robs a cryptanalyst as they are no longer looking for recurring encoding as in an letter ‘e’ can be encrypted as different letter each time. Playfair was long time considerably unbreakable. There are 26 letters so it is 26*26=676 diagrams which are quiet difficult to break. Disadvantages Still leaves much of the language structure Frequency distribution of letters Few 100’s of ciphertext letters are enough for cryptanalysis. Applications Playfair cipher was used by British army during World War 1. When John F. Kennedy’s PT-109 was sunk by a Japanese controlled plum pudding island and was able to send an emergency message in playfair from an allied coast watcher’s hut to arrange the rescue of the survivors from his crew. Playfair crossword by Beetlejuice is an example puzzle using playfair as a gimmick. Vigenere Cipher Vigenere cipher made an immediate success as a field cipher. This type of polyalphabetic cipher was designed by Blaise de Vigenere, a sixteenth century French mathematician. A vigenere cipher uses a different strategy to create the key stream. The key stream is a repetition of an initial secret key stream of length m, where we have 1P= p1p2p3….. C= c1c2c3…… K= [(k1,k2,k3……km),(k1,k2,k3………km),…] Encryption: Ci= Pi Ki Decryption: Pi= Ci-Ki One important difference between the vigenere cipher and the other polyalphabetic ciphers is that the vigenere cipher key stream does not depend on the plaintext characters; it depends only on the position of the character in the plaintext. In other words the key stream can be created without knowing what the plaintext is. Example mathematically “She is listening” this message should be encrypted using the keyword “PASCAL”. plaintext s h e i s l i s t e n i n g P values 18 7 4 8 18 11 8 18 19 4 13 8 13 6 key 15 0 18 2 0 11 15 0 18 2 0 11 15 0 C values 7 7 22 10 18 22 23 18 11 6 13 19 2 6 Ciphertext H H W K S W X S L G N T C G Another way to look at viginere ciphers is through what is called a Vigenere Tableau. The first row shows the plaintext character to be encrypted. The first column contains the characters to be used by the key. The rest of the tableau shows the ciphertext characters. To find the ciphertext for the plaintext “she is listening” using the word ‘pascal’ as the key, we can find “s” in the first row, “p” in the first column, the cross section is the ciphertext character “H”. We can find “h” in the first row and “A” in the second column, the cross section is the ciphertext character “H”. The same method should be followed until all the ciphertext characters are found. C:UsersmadhuDesktoptable.PNG Vigenere Tableau Cryptanalysis of Vigenere Cipher Vigenere ciphers do not preserve the frequency of characters. The cryptanalysis here consists of two parts for finding out the length of the key and finding the key itself. Several methods has been devised to find the length of the key but one method called kaisiski test, the cryptanalysis searches for repeated text segments, of atleast three characters, in the ciphertext. Suppose that two of the segments are found and the distance between them is d. The cryptanalyst assumes that d/m where m is the key length. If more repeated segments with distances d1,d2,d3….dn then gcd (d1,d2,d3,…..dn)/m. This assumption is logical because if two characters are the same are k*m (k= 1,2,……) characters part in the ciphertext. Cryptanalyst uses segment of at least three characters to avoid the cases where the character in the key are not distinct. After the length of the key is found, the cryptanalyst uses the idea of dividing the ciphertext into m different pieces and applies the method used to crypt analyze the additive cipher, including the frequency attack. Each ciphertext piece can be decrypted and put together to create the whole plaintext. Vigenere Cipher Using Cryptool To perform vigenere cipher encryption a new document is opened and then the encryption and decryption is performed. C:UsersmadhuDesktopvin1.PNG This plaintext document is encrypted using the vigenere encryption algorithm by selecting the keys crypt/decrypt/vigenere following which another dialog box appears. C:UsersmadhuDesktopvin3.PNG By clicking on the Encrypt button opens a new window that contains the encrypted text. C:UsersmadhuDesktopvin2.PNG The plaintext of this document can now be obtained by selecting crypt/decrypt/vigenere. In the dialog box which appears then where the key with which the document was encrypted. This time the document is to be decrypted. Therefore the decrypt button must be selected. C:UsersmadhuDesktopvin3.PNG By clicking on the decrypt button the plaintext document appears immediately. C:UsersmadhuDesktopvin4.PNG To find the key with which the document was encrypted. Restore the encrypted document window and then select analysis/ciphertext only/vigenere, following with which the text will automatically be analyzed. C:UsersmadhuDesktopvin5.PNG It is possible to work out the key length from the regular peaks in the autocorrelation. It is correctly calculated at 6 characters. C:UsersmadhuDesktopvin6.PNG When the continue button is clicked, another dialog box opens to display the key that has been computed. C:UsersmadhuDesktopvin7.PNG By clicking on the decrypt button the dialog box disappears and another window opens which contains the plaintext. C:UsersmadhuDesktopvin8.PNG Hill Cipher Hill cipher is invented by Lester S. Hill. This polyalphabetic cipher divides the plaintext into equal size blocks. The encrypted one at a time in such a way that each character in the block contributes to the encryption of other characters in the block. Hill cipher belongs to the category of ciphers called block ciphers. C1= ( ) mod 26 C2= ( ) mod 26 C3= ( ) mod 26 The encryption algorithm takes m successive plaintext letters and substitute for them m ciphertext letter. The substitution is determined by m linear equations in which each character is assigned a numerical value (a=0, b=1,c=2, ……..z=25). This can be expressed in terms of column vectors and matrices = mod 26 C = KP mod 26 where C and P are column vectors representing the plaintext and ciphertext. K is the encrypting key. Example for Hill Cipher: Plaintext: pay more money Key (K) = C = KP mod 26 = mod 26 = = LNS For plaintext pay, ciphertext is LNS. The entire ciphertext is LNSHDLEWMTRW. For the decryption of the hill cipher is done using the inverse of the matrix K. Cryptanalysis of Hill Cipher Ciphertext-only attack on hill cipher is difficult. Even brute force attack on a hill cipher is extremely difficult because the key is an m*m matrix. Each entry in the matrix can have one of the 26 values. At first glance, this means that the size of the key domain is. Secondly the hill ciphers do not preserve the statistics of the plaintext. Frequency analysis cannot be run on single letters, diagrams and trigrams. A frequency analysis of words of size m might work, but this is very rare that a plaintext has many strings of size m that are the same.

Your company is a 4-year-old startup called XYZ Software Enterprises. XYZ produces a point of sale system and was awarded

Your company is a 4-year-old startup called XYZ Software Enterprises. XYZ produces a point of sale system and was awarded. Your company is a 4-year-old startup called XYZ Software Enterprises. XYZ produces a point of sale system and was awarded a Proof of Concept (POC) to one of the largest and oldest restaurants in the industry (you know, the ones in the commercials all the time). The restaurant wants XYZ to prove that the software will do what the sales people said it could do. Your Proof of Concept will include four parts: Part 1: Gantt Chart Part 2: Testing and User Acceptance Report Part 3: Use Case Diagram Part 4: Activity Diagram Part 1: Gantt Chart A Gantt Chart (see page 353 Figure 11-18) needs to be created for the entire process of the Proof of Concept. There is a two-month deadline from today to complete the POC. Using Visio or Excel, create a Gantt Chart that includes all of the items listed below and adds five more tasks minimum from the concepts learned from the course: The initial meeting — today. Should appear as the first line. Teams selected to participate in the project (1 week). Information gathering (add the information gathering methods you will use and how long each will take). System configurations based on information gathering methods (2 weeks). Create Activity Chart based on information gathering (info to create chart supplied). Create Use Case Diagram based on information gathering (info to create chart supplied). Show the finished configurations to the team and get feedback (1 day). Make changes based on feedback (3 days). Install the system in the test store (2 days). Train staff (1 day). Run a live test of POC (2 weeks). NOTE: The five or more additional tasks can be subtasks for information gathering methods as well some other subtask or major task not in the initial list. You may add items from the SDLC, specific item(s) on testing, or any other concept you think should be part of the POC process learned in the course of this semester. NOTE: Remember that events in a Gantt chart can happen at the same time as other events. Some items also cannot start until others are completed. Everything has an estimated timeframe and it is displayed in the chart. Part 2: Testing and User Acceptance Report As part of the expected documentation in the POC, XYZ wants a report on Testing and User Acceptance. Your manager is asking you to research the testing criteria they listed in the POC documents. The POC document states that they are looking for: System and Stress Testing User Acceptance Testing (UAT) For both categories, research and report on: What these tests are. Why the industry leader would want these particular tests. The best ways, in detail, to accomplish the tests so that your company meets the criteria they are looking for. These items can be added to your Gantt Chart (Part 1) Part 3: Use Case Diagram The restaurant, as part of the information gathering, outlined a use case in a chart (below). Your manager assigned you to create the Use Case Diagram using Visio, MS Word, or any other software. (See the diagrams on Page 84 and 85 of the textbook.) Paste the diagram into the created report. USE CASEACTOROrder Food Waiter, Patron, ChefServe FoodWaiterCook FoodChefPay for food Waiter, PatronEat FoodPatron Part 4: Activity Diagram As a part of the information gathering process, a chart of items was provided by XYZ. Your manager has asked that you use Visio, MS Word, or any other software with which you are familiar to create the Activity Diagram (see pages 138 Figure 5-5 and 139 Figure 5-6 in the textbook.) Paste the diagram into the created report. POS SALES PROCESS Activity Diagram Host/Hostess seats patronServer takes drink orderServer opens order for table in POS systemServer places drink order in the POS systemSystem sends drink order to the BarBar makes drinksServer brings drinks to tableServer takes food orderServer adds food order in the POS systemOrder goes to kitchenChef and staff cook the orderFood Runner brings food to tableServer takes dessert orderServer adds dessert order to POSChef and Staff create dessertsFood Runner brings desserts to tableServer creates check in POSServer collects payment and enters it in POSServer adds tipped amount to POSServer closes table in POS Additionally you must: Use at least 3 quality resources. NOTE: Wikipedia and similar websites do not qualify as quality resources.Your company is a 4-year-old startup called XYZ Software Enterprises. XYZ produces a point of sale system and was awarded

UOTC Overview of Hacking Internet Advances & Confidential Data Discussion

UOTC Overview of Hacking Internet Advances & Confidential Data Discussion.

words:600Search the Internet and locate an article that relates to the topic of HACKING and summarize the reading in your own words. Your summary should be 2-3 paragraphs in length and uploaded as a TEXT DOCUMENT. Click the link above to submit your work. There is an EXAMPLE attached to show you the format requirements.What is most important is that you use YOUR OWN WORDS to summarize the news article. It is essential that you do not copy text directly from the Internet. Plagiarism is unacceptable. You can easily avoid this by rephrasing the contents and summarizing it using your own words.A reference citation is also required for this assignment. You may just include a link to your article. Due NLT 2359 Saturdayrefer to attached file
UOTC Overview of Hacking Internet Advances & Confidential Data Discussion