Get help from the best in academic writing.

Mid Staffordshire Scandal Explained

Share this: Facebook Twitter Reddit LinkedIn WhatsApp Wilful neglect can be explained as an offence related to performance. Aftermath Mid Staffordshire scandal it was related to dereliction of duty, besieged and a sequence of petrifying blunders in healthcare sector (Alghrani et al. 2011). In the Mid Staffs public inspection many disagreements took place for and opposed to the foisting of a judicial duty of candour on health professionals, scrutinizing the probability of claims that such a duty would result in a greater secrecy amongst them and might lead to protected professional practice. At an organisational level there was a very sad climate of fright in staff as they had to face impassive attitudes and chicanery. Investigation of disagreement for imposing an individual duty, foreground the pre-existing moral obligation on healthcare professionals to apprise the patients who have encountered harm, has not yet been adequately immersed throughout the National Health Service (NHS) by the professional rules of conduct, and there is a requirement to initiate consistent and legalized reporting in order to slash any clinical errors (Kemp 2014). This essay will draw a light on the reviews of critics who believe that introduction of such reforms might deter clinicians to speak about malpractice from their co workers. The Mid Staffordshire scandal concerned about the mortality and the standard of care provided to the patients resulted in an inspection by the Healthcare Commission (HCC) which had issued a critical report in March 2009. . This inquiry was made by the Rt Hon Andy Burnham Health Secretary of State. At Mid Staffs the amalgamation of turning an already grappling hospital into a foundation trust and immoderately doing savings in an extremely hasty manner, while pressing on to achieving those targets led to catastrophic consequences for many patients. These set of investigations gave rise to worldwide public concern and loss of credence of people in the NHS Foundation trust, its services and management (Francis 2010). Making a ten million pound profit out of the budget in a year was the grounds of calamity. The Board was aware of hitches in the emergency department but their main focus was on promoting the trust cogently (INQUIRY
This essay should be very personal and with many details! (if you have any questions please let). My obstacle is moving to USA from my native country. That is for several reasons: 1. When I finally got the document and was able to move to US and leave of my family (mom, dad, brother), I was the happiest person on Earth, but it did not last long. Three month after being in US school, I had to take SAT exam, which includes a lot of advanced English. In Ukraine, I had an excellent English grade and was praised by my teacher, however, upon arrival to the USA, I quickly realized the I can not speak fluent English with my teachers at school, did not understand majoring of the words in the SAT English Section, and can not take AP classes right away( school administration and my counselor assumed I would not do well in these classes and did not even consider me as a potential candidate). Back in my home country, I was among the best students in the whole school, had awards for an excellent academic performance, but everything changed here. I felt very embarrassed, sad, and ashamed by the fact that I was placed in the easiest classed possible and in junior years in school did not have any AP classes like the rest of the students of the same age. My SAT score come out to be low and felt left behind from the rest of the competitive classmates who were satisfied by their score and shared happy news with each other. I remember going home and crying because I was too ashamed by my score and had to keep this news all to myself. At that point, I thought that my career path would be ruined. But that was not all. 2. Inaccurate transfer of credits. The grading scale in Ukraine is different that US system. In my home county, they use 1-12 scale with 12 being the best grade. After 9th grade in Ukrainian school, I transfer to the medical college (it is possible in most European countries; it resembles nursing school in US), which had a scale of 1-5 to grade. Medical college was my 10th grade. For the 11th grade I was here, in US. The school counselor was really confused about transferring those 2 different grading systems into US letter scale. Thus, some of the letters in my school transcriipt did not really represent the grade (numbers) I received as a grade in Ukraine. It was all tough and disappointing to see that all my effort put into earning good grades in Ukraine was wiped away by inaccurate transfer of my credits. But that was not the worst. 3. They did not transfer all of my classes. The classes that US school did not offer to take were not transfer, for example, Law, Ukrainian literature, Ukrainian literature… Imagine investing so much time into learning a subject, putting all the efforts into getting good, and in return you have nothing. That was the most disheartening thing ever. Also, the educational system in Ukraine does not offer the classes of different ranking (AP, HONORS, ADVANCED); they are all the same. So without even looking at how the system works, everybody looking at my transcriipt assumed that I took the easiest classes, when in reality I did not have a choice. In the 12th grade, I started taking 2 AP classes, but to apply to the prestigious schools 2 AP classes and a few more “easy” classes was not enough (they did not even consider the “translated” transcriipt from Ukraine). My school was among the best public schools in US, so every student applying to the college was very competitive and did everything they could (sport, community services, music, choir, different clubs excellent academic record) to get into top tier schools. With only 2 years in US school, I did not have enough AP. classes of my transcriipt, outside of the school hobbies to share in my application, bad SAT score, and other small issues, I understood that the only thing i can do to get back on track is to go to the local community college. There I was able to take college classes to make my transcriipt look complete, find a hobby that I like( volunteering at the hospital), find new friends, and be a part of the Honors Program. TASK: LOOK AT THE TOPIC VERY CAREFULLY! I would like you to describe all the challenges I faced in US school and how the qualities I developed helped me to became i stronger student and will help me in the future. PLEASE DESCRIBE ALL THE FEELING AND EMOTIONS I WENT THROUGH BASED ON THE STORY YOU READ ABOUT ME. IT IS VERY IMPORTANT TO DESCRIBE MY PAIN AND EMOTIONS IN THE RIGHT WORDS SO THAT I READER CAN FEEL IT! Please think of the creative way to do it (for example, it can be inner dialog with myself, or a conversation with my mother). Please be creative with it! You can make up thoughts, emotions, or some parts that I did not fully explain, but please stick to the overall story. Your language should be clear and diverse. Use advanced vocabulary. No repetitions (use the synonyms instead of using the same words over and over again). Make the story sound smooth and clear. Please do not make grammar mistakes. THANK YOU!
Refer to the readings and videos from this week and previous weeks where necessary to answer the following questions: 1. How efficient are non-profit hospitals at providing uncompensated car vs for-profit hospitals? 2. What requirements are needed for a hospital to receive non-profit status? 3. Are a hospital’s financial losses on charity care an adequate measure of its social responsiveness to people’s unmet needs? 4. Does requiring hospitals to accept a minimum amount of annual financial loss on uncompensated care promote cost savings throughout the health care system? 5. How far does the safety-net provision of charity care in hospital emergency departments and clinics advance the goal of supporting healthy communities? 6. What distinguishes the act of giving care to someone who does not pay due to indigence? Answer all of the questions and submit your answers to the dropbox by Sunday at midnight.  Your submission must be double spaced with 12-point font. Book: Chapter 4: Modeling Community Benefits: Social Contract, Common Good, Covenant Media: Very Profitable Nonprofit Hospitals…But Where Are The Profits Going? Media: The Economics of Healthcare
COM 300 University of British Columbia Motivation for Sleeping Employees Essay.

Problem-Solving Report : Sleepy EmployeesThe Problem:You are the HR Manager of a health food store which sells vitamins and supplements. You recently gave a health and wellness survey to your sales team and found shocking results: 95% said that they weren’t getting enough sleep each night. When you told your boss about these results, she was very concerned that sleep could affect employees’ job performance. So, she has asked you to write a report to suggest 1 way to help employees improve their sleep. Please write a 1-1.5 page report which includes the sections below. To decide which order to put these sections in, find out if this is a direct or indirect report. Introduction ResearchRecommendationGuidelines:You have 3 hours Submit your answer in a Word documentDo not plagiarize Paraphrase instead of using direct quotesInclude 4-6 online sourcesEnsure your sentences are under 20 wordsInclude all your sources Include a title, headings and subheadingsUse simple and familiar languageMake your recommendations very specific and concreteUse transition words to connect your sentencesPut the subject and predicate at the beginning of your sentencesMake sure your sentences and bullet points are parallel
COM 300 University of British Columbia Motivation for Sleeping Employees Essay

ASCI 309 Embry Riddle Aeronautical University Jet Performance Presentation

ASCI 309 Embry Riddle Aeronautical University Jet Performance Presentation.

I’m working on a other presentation and need a sample draft to help me learn.

In this module, some of the background considerations for jet and propeller aircraft performance were introduced by taking a closer look at the different propulsion systems. During the next module, you will apply these fundamentals to your aircraft example and its unaccelerated performance. Nevertheless, since all of your example aircraft are propeller-driven, it makes sense to divert your attention for a moment to introduce some of the application of performance principles in jet aircraft. Choose a jet aircraft to use as your example for this activity. It should not be an exotic jet aircraft, as you will need to find data online for the aircraft. If you choose a military aircraft, make sure you are not using classified data to support your work. Only use data that is available to all on the internet. You will then use the data you gathered for this particular aircraft to show examples of your performance problems and how you derived them.To provide an outlook to some of the aspects of next module’s unaccelerated performance, select a jet aircraft of your choice, choose three (3) of the following items of performance, and prepare an instructional presentation (utilizing a presentation tool of your choice – see resources in the Online Tools section) that explains in-depth how to find these different items of performance for a jet aircraft. This will be a standalone presentation and will not be attached to your comprehensive presentation project. Available choices: maximum forward speed in level flightabsolute ceilingbest angle of climb airspeedangle of climbbest rate of climb airspeedrate of climbmaximum endurance airspeedmaximum range airspeedinfluence of weight on performanceinfluence of altitude on performanceinfluence of configuration on performanceYour presentation should be created using Powerpoint or the presentation platform of your choice. Include reference using APA formatOnline toolsDavid Lednicer’s (2010) Incomplete Guide to Airfoil Usage (Links to an external site.)Martin Lambden’s (2017) Airfoil Tools (Links to an external site.)NTRS – NASA Summary of Airfoil Data (Links to an external site.)The Engineering Toolbox (Links to an external site.)Aircraft Turn Information Calculator (Links to an external site.) from CSGNetwork.comTurning Performance (Bank Angle) (Links to an external site.) from PilotFriendType Certificate Data Sheets/FAA
ASCI 309 Embry Riddle Aeronautical University Jet Performance Presentation

Identification of Bacterial Isolates

best assignment help Identification of Bacterial Isolates. A number of research studies conducted the analysis of commercially available MALDI-TOF MS systems to evaluate their performance to identify the routinely encountered bacterial isolates in clinical microbiology laboratories (Table X). The vast majority of errors in these reports are attributed to incomplete population of databases, technician error in database assembly and during data acquisition or lack of the MS spectra to differentiate similar species. Seng and co-authors reported a MALDI-TOF MS based study of 1660 bacterial isolates representing 109 different species. Identification was achieved for 84.1% of isolates to the species level but 11.3% at the genus level. They found that nearly 50% of S. pneumoniae isolates were misidentified as Streptococcus parasanguinis as the database included two S. parasanguinis reference spectra and three S. pneumoniae only. In addition, 70% of Stenotrophomonas maltophilia were misidentified as Pseudomonas hibiscicola and all of Shigella sonnei as E. coli. Moreover, 64 isolates were not detected by MALDI-TOF MS. However, these misidentifications and lack of identification for 64 isolates were due to improper database entries (Seng et al., 2009). In a retrospective study on 1116 clinical isolates, MALDI-TOF MS (Bruker Daltonics) could achieve 1062 (95.2%) overall correct identification at the species level. Correct identification of non-fermenting gram negative rods, streptococci, enterobacteriaceae, staphylococci and enterococci are 79.7%, 93.7%, 95.5%, 99.5% and 100% respectively (Eigner et al., 2009) Cherkaoui and co-authors first compared the performance of two commercially available MALDI-TOF systems (Bruker Daltonics and Shimadzu) with routine biochemical tests commonly used for bacterial species to identify 720 isolates representing 33 different genera. They found that correct identification at the species level was achieved in 99.1% of cases by Bruker and 88.8% by Shimadzu. Among the species, the percentage of isolates identified was lowest in anaerobes (only 17% by Bruker and 0% by Shimadzu) i.e. they were frequently unidentified. In addition, streptococci were poorly identified only 41% by both MS devices (Cherkaoui et al., 2010). In a study of 1371 clinical isolates, it was found that 1278 (93.2%) could be identified at the species level and 73 (5.3%) at the genus level by MALDI-TOF MS (Bruker Daltonics) (Bizzini et al., 2010). Similar results were published by analyzing 980 microbial isolates in which 61 yeast isolates are also included. Overall correct MALDI-TOF based identification at the species level was 92%. Discrepancies between biochemical identification and MALDI-TOF was verified by using 16S rRNA gene sequencing and correct species identification by using MALDI-TOF MS was observed in 97.7% of Enterobacteriaceae, 92% of non-fermentative Gram-negative bacteria, 94.3% of staphylococci, 84.8% of streptococci, and 85.2% of yeasts. Misidentifications are related with a lack of reference spectra for rare species in database and viridans streptococci and pneumococci are frequently misidentified(van Veen et al., 2010) Recently, a study compared the performance of three MALDI-TOS MS systems Microflex LT (Bruker Daltonics), Vitek MS RUO (Axima Assurance-Saramis database; bioMérieux) and Vitek MS IVD (bioMérieux). Total 1129 isolates were tested on the Microflex LT and Vitek MS devices and spectra were analyzed by three databases namely Biotyper (Bruker Daltonics), Saramis, and VitekMS(bioMérieux). These databases performed almost equally and 93% of isolates were accurately identified to the species level (Martiny et al., 2012). Regarding to the delay of MALDI-TOF MS bacterial identification, it was estimated that the average delay for the identification of a bacterial isolate is 6 minutes compared to the conventional gram staining methods that will take 5 to 48 hours to get the result. Specifically, for MALDI-TOF MS identification (15 isolates; 4 spots per isolate), it took 25, 15 and 50 minutes for plate preparation, plated loading and plate reading and spectra interpretation respectively resulting in a mean delay of 6 minutes an isolate. (Seng et al., 2009). Further studies will be necessary to identify the impact of speed of MALDI-TOF MS on the patient treatment outcomes in various settings including rapid identification of bacterial pathogens and their antibiotic susceptibility testing. Despite higher initial cost of the instrument, MALDI-TOF MS technology is more cost-effective than the conventional phenotypic identification methods. In addition, it is also user-friendly requiring the low to medium level of training for laboratory workers whereas the conventional methods of bacterial identification such as gram staining and Vitek system require relatively higher level of training and more processing time. Total cost of MALDI-TOF MS identification was much less than that of conventional identification (€2.44 Vs € 4.60-13.85) as seen in Figure XXX. In other words, it cost only 22%-32% of the total cost of conventional phenotypic identification. Cost calculation was based on addition of the cost of specific consumables, salary for employees and 5-year depreciation of the apparatuses such as apparatus used in gram staining, microscope, identification apparatus and mass spectrometer (Seng et al., 2009). Therefore, the reduction of cost is one of the advantages of MALDI-TOF MS. A similar cost-estimation in US dollars was carried out by Cherkaoui and co-authors. However, the results represented the cost to the laboratory rather than the patients. Mass spectrometry instruments are costly and the expenses are comparable to 16S sequencing devices and automated blood culture devices. Nevertheless, the marginal estimated cost of MS identification for an isolate was US$ 0.50. On the other hand, it cost US$ 10 per isolate for phenotypic identification using automated devices (Cherkaoui et al., 2010). Therefore, application of MALDI-TOF MS is more economical than the other methods for bacterial diagnostics. This will have a large impact on the healthcare system in terms of saving cost and time and achieving fast and reliable bacterial diagnosis for a better management of infectious diseases. For the diagnosis of UTIs, blood and bacteria present in the urine hamper the urinary proteomic analysis by changing peptide mass signals (Fiedler et al., 2007). In addition, the presence of bacterial overgrowth in the urine sample could impair the proteomic analysis and thus it is recommended to centrifuge to remove epithelial cells and leukocytes in pellet and store the sample at 4oC or add boric acid or NaN3 to avoid bacterial overgrowth (Thongboonkerd and Saetun, 2007). MALDI-TOF combined together with UF-1000i urine flow cytometry is useful for the fast, accurate and direct analysis of UTIs (Wang et al., 2013). Wang and co-authors compared conventional identification, MALDI-TOF MS and urine flow cytometry. In this study, the urine flow cytometry, as a prescreening step, eliminates negative samples rendering downstream utilization of MALDI-TOF MS more efficient whereas MALDI-TOF MS is used to determine the presence of bacteria in remaining positive samples. The results are compared with those from phenotypic methods and discrepancies are resolved by 16S rRNA gene sequencing. 943 (64%) of 1456 samples from patients showing UTI symptoms are negative by using these three testing methods. The combined method is consistent with the conventional method in 1373 of total 1456 cases (94.3%), and gives the correct result in 1381 of 1456 cases (94.8%). The identification process could be hastened by direct identification of microbes from blood culture bottle broth using MALDI-TOF systems. The blood culture broth should be processed in order to limit disturbances from hemoglobin and blood cells and to concentrate the bacterial pathogens in the blood. The procedure involves centrifugations steps to remove red blood cells and then lysis by formic acid or trifluoroacetic acid. Staphylococci identification can be improved by using formic acid instead of trifluoroacetic acid in the workflow and the overall correct identification rose from 59% to 76% (La Scola and Raoult, 2009). There are some reports concerning with the possibility of direct bacterial identification in blood culture samples. Organisms are detected by automated blood culture systems and MALDI-TOF MS devices identify the detected organisms in these studies (La Scola and Raoult, 2009, Prod’hom et al., 2010, Stevenson et al., 2010). Using various protocols, the processing of samples can be divided into four steps (1) collection of specimen (2) removal of RBCs (3) protein precipitation and finally (4) protein extraction and solubilization. After that, MALDI-TOF MS will analyze the samples. Protocols using extraction are better and more effective than those with the intact cell method (La Scola and Raoult, 2009, Ferreira et al., 2011). Performance in detecting bacteria in positive blood culture broth was tested by a number of studies. In these studies, they indicate that MALDI-TOF MS software was unable to reliably detect all organisms in mixed cultures. Firstly, La Scola and Raoult tested 584 positive blood cultures including 562 specimens containing a single bacterial species and the remaining specimens containing mixed bacterial species. Two different protocols were used. They could detect more gram-negative bacteria than gram-positive bacteria; 94% of gram-negative organisms were identified compared to 67% of gram-positive organisms. Moreover, Viridans streptococci could not be identified at all. In the 22 positive blood culture broths with mixed species, only one of the species was detected in 18 samples and then 2 samples could not identified at all and 2 samples as false species. It was recommended to use gram staining to achieve optimal detection of mixed species (La Scola and Raoult, 2009). In a further study by Prod’hom et al., correct identification was obtained for 78.7% of 122 positive blood cultures. Identification was failed mainly for streptococci and staphylococci. 8 out of 10 Streptococcus pneumoniae were not identified and the two others were identified only with a low score. In addition, detection of encapsulated microorganisms such as Haemophilus influenzae and Klebsiella pneumoniae was not accurate (Prod’hom et al., 2010). A third study by Stevenson et al. used the BioTyper software version 2.0 to identify 212 positive cultures representing 60 species and 32 genera. Most commonly due to inadequate number of bacteria in blood culture broth, less than 42 (19.8%) of isolates with spectral score of <1.7 could not identified. 162 (95.3%) of isolates were accurately identified at the genus level with scores of ≥1.7 and at the species level, 138 (65%) were obtained for correct identification with scores of ≥1.9. All of eight Streptococcus mitis resulted in misidentification as Streptococcus pneumoniae (Stevenson et al., 2010). All organisms misidentified as being S. pneumoniae by MALDI-TOF MS are recommended to confirm by doing a bile solubility test directly on the blood culture broth(Murray, 1979). A study with larger sample size of 277 aerobic and anaerobic isolates achieved the accurate identification for 95% at the species level. Mismatching was mainly due to insufficient bacterial numbers and occurred with gram positive samples (Christner et al., 2010). Recently, Chen and co-workers compared the two different commercial MS systems namely Vitek MS IVD (bioMérieux) and the Microflex LT Biotyper (Bruker Daltonics) for the microbial identification directly from 202 blood culture-positive specimens. 181 of them were monomicrobial and the remaining 21 blood cultures were polymicrobial. Sample processing was done using the Bruker Sepsityper kit. Evaluation of performance of these devices revealed that the Biotyper system produced more correct identifications than the Vitek MS IVD system (177 Vs 167 out of 181 monomicrobial specimens). Both systems performed genus to species level identification for more than 90% of specimens (Biotyper, 97.8%; Vitek MS IVD, 92.3%). In polymicrobial blood cultures, Bruker Biotyper generated polymicrobial identifications in 5 out of 21 mixed-culture specimens (23.8%). So far, both systems are not reliably ready yet for direct use with polymicrobial cultures (Chen et al., 2013). In parallel with bacterial identification, rapid testing of antibiotics sensitivity of bacteria is also critical for the timely implementation of targeted antibiotics treatment to patients. Although there have been rapid testing kits for routinely encountered resistant strains such as MRSA, these are limited to be applicable to a few number of bacterial species. Moreover, automated phenotypic identification systems of bacteria e.g. the Vitek-2 and the Phoenix systems can also be used to identify antimicrobial susceptibilities but these methods will take more time to get results. Therefore, MALDI-TOF MS may be adopted to serve as a universal platform for not only rapid identification but also covering to a wide range of resistant bacterial species in the workflow of the microbiological laboratory. Beta-lactamase detection Camara and Hays published a study which focused on a specific beta-lactamase peak for ampicillin-resistant Escherichia coli which were grown in Luria-Bertani broth mixed with penicillin. From the protein extracted and spotted onto a MALDI-TOF plate, beta-lactamase peak of approximately 29 kDa was successfully found in the spectra. By using whole cells for bacterial identification or using the other matrices instead of sinapinic acid, the peak of beta-lactamase was not detectable. The 29kDa was then identified by SDS-PAGE and LC-MS peptide mass fingerprinting as beta-lactamase(Camara and Hays, 2007). Recently, Schaumann and co-workers tried to evaluate how MALDI-TOF MS can discriminate among ESBL-producing or MBL-producing and non-producing E.coli, Klebsiella pneumoniae and Pseudomonas aeruginosa. The correct classification rates achieved showed that strains producing ESBLs and MBLs tend to produce different spectral patterns compared to the nonproducing counterparts, but 70% accuracy was not yet reliable enough for routine diagnostics (Schaumann et al., 2012). Identification of Bacterial Isolates

ECE 210 Grand Canyon University Developmentally Instructional Strategies Paper

ECE 210 Grand Canyon University Developmentally Instructional Strategies Paper.

I’m working on a writing multi-part question and need a sample draft to help me understand better.

Instructional strategies are the heart of learning. Instructional strategies are the activities that are modeled, practiced, and then completed independently in various learning opportunities. As soon as an alignment between what will be measured and how it will be measured is defined, instructional strategies are considered.For this assignment, you will be developing instructional strategies for the standards and objectives you created in Topic 2. Using the “Instructional Design Topic 3: Instructional Strategies” section of the “Instructional Design Unit” template, develop instructional strategies and assessments for one standard and one objective in each grade band (birth to pre-K and kindergarten to grade 3). Include the following in your template:Standards (one for birth to pre-K and one for K-grade 3)Objectives (one for each standard)Developmentally appropriate instructional strategies for each standard including, modeling, guided practice, and independent practiceAssessment to ensure alignment, keeping in mind that it may need to be revisedIn 250-500 words, describe the importance of modeling and guided practice for supporting instruction. How do they provide an informal check for understanding and allow for modifications during instruction?Support your response with 2-3 scholarly resources.APA style is not required, but solid academic writing is expected.Topic 3 on the attached needs to be filled out!!!!
ECE 210 Grand Canyon University Developmentally Instructional Strategies Paper

What is a developmental delay?

What is a developmental delay?. I don’t know how to handle this Psychology question and need guidance.

Each class, students will be responsible for reading three research articles and completing written responses to the
readings for that day. These responses are meant to facilitate class discussion of the assigned material. For each
response, students will be required to write a one-page paper synthesizing the three articles and include at least 1
discussion question per article that they are prepared to bring up in class that day. Article Response assignments
must be turned in online via Canvas by 12:00 PM (noon) on the day of class (Thursday). Only assignments
submitted ON TIME via the designated link on Canvas will be graded. NO EXCEPTIONS.
The following factors will be considered in grading: relevance, accuracy, synthetization of the reading materials,
degree to which the responses show understanding/comprehension of the material, and quality of writing.

Times New Roman 12
Please find the 3 articles attached
What is a developmental delay?

Essay Writing at Online Custom Essay

5.0 rating based on 10,001 ratings

Rated 4.9/5
10001 review

Review This Service




Rating: