Get help from the best in academic writing.

Local Customs and Traditions in the US Essay

Local Customs and Traditions in the US Essay. In the story “The Way of the Machete” by Martin A. Ramos, the concept of local customs and traditions, providing a significant backdrop to the story, can be seen in the duel between Scipo Armenteros and Josué. Local customs in this particular case manifest themselves through the belief of defending your personal honor with your life. Such an act greatly differs from what you would normally see in countries such as the U.S. where local customs are far different. This difference in customs impacting behavior can be seen in the story “My Mother, the Crazy African” wherein Lin is ashamed of her mother who is thoroughly immersed in her Nigerian culture and background despite being in the U.S. From another perspective, the story “Growing My Hair Again” by Chika Unigwe showcases how the cultural tradition in Nigeria of shaving one’s head in respect after one’s husband has died clashes significantly with how Nneka (the wife) viewed her husband who had abused her continuously. From this perspective, it can be seen that local customs and traditions can often be utilized as significant plot devices within a story. The story “Leng Lui is for Pretty Lady” by Elaine Chiew showcases an interesting villain in the form of Mrs. Kong. This character is interesting, despite the fact that she is portrayed as the potential future antagonist in the story, since in the end she saves Alina. Such an interesting villain character is also embodied by Scipo Armenteros from “The Way of the Machete” since his brash ways, “in your face” attitude and general demeanor makes him far more interesting than rather tame, calm and otherwise uninteresting side characters in the story. While not necessarily a villain character, Abdul Chacha from Ishwari’s children can be considered a somewhat amusing “bad” character in that his initial rudeness when he was presented and immediately squashed by his wife. This was a humorous scene which demonstrated that even the most haughty of men had a weakness. The depiction of conflict between children and adults often takes a myriad of forms, whether positive or negative in nature, and often creates interesting stories as a result. For instance, in the story “The Rich People’s School” we see that Sylvia does not want to attend the school because she feels that she does not fit in and is in conflict with her grandmother because of it. In the end though, she is convinced by her grandmother that going to a good school is still better than the alternative. The concept of adult and child conflict in the case of “Air Mail” is a lot more subtle in that the teacher in the story apparently stopped teaching because he saw no point in it. From this perspective, it can be stated that the conflict was his lack of belief in the future generation. On the other hand, the conflict in the story “Honor of a Woman” is more straightforward in that the reason behind the conflict is due to the daughter staying out late. In the story “Growing My Hair Again” we see the perspective of Nneka who is initially trying to defy tradition due to the sheer amount of abuse she received. In the case of the story “Porcelain” the three female protagonists, Marion and her three aunts, showcase their ability to live independently from men and to manage well enough on their own. In the case of “Kelemo’s Woman” we see the character or Irolia attempting to be independent from Kelemo, the man she is in a relationship with, since she has become disenfranchised with the way they have lived. What these stories reveal is the strength of female protagonists and how the characterization of women being weak is far from true. Local Customs and Traditions in the US Essay
Casein, Ovalbumin and Collagen: Structure and Function. Introduction Proteins are very important complex molecules that play significant biological functions in the cells that are most important to life (growth, repair, regeneration, etc). Proteins are polymers made up of amino acids (building blocks) which differ to other molecules due to their nitrogen content, and are linked by peptide bonds. The structure of protein is dependent on the amino acid sequence (primary structure) which determines the molecular conformation (secondary and tertiary structures). Amino acids are very soluble, due to presence of oxygen and nitrogen in them is very electronegative (amino acids are readily carried around in aqueous state). Proteins can also occur as quaternary structures. Primary structure gives the linear sequence of amino acids in a polypeptide chain while the secondary structure reveals the arrangement of the chain in space (polypeptide chain coiled into a spiral or helix to have a three dimensional structure, alpha helix). Tertiary (disulphide bond) (helical polypeptide molecule is folded on itself as spherical or rod like) and quaternary structured proteins can be dived into two groups on basis of conformation; fibrous or scleroproteins, and globular or folded proteins. In this essay I will begin by talking about the structure of proteins and will go on to discuss about their functions. Three main protein examples will be used; casein, ovalbumin and collagen protein. Structure of proteins The primary structure of a protein defines a key location called the active site, the region that is associated with the primary activity of a protein, even though it is often made up of only a small number of residues. Therefore, the amino acid unique linear sequence in polypeptide chain defines the protein primary structure. Primary structure is composed of various amino acids held together by peptide bonds. Secondary structure makes 60% of the protein structure consists of alpha helix or beta strand (sheets) conformation. It is most common spiral structure of protein form right handed helix (right handed arrangement). Each turn of a alpha helix has 3.6 amino acids. This coiled structure is locally stabilized by hydrogen bonding which occurs between C=O group of one amino acid and N-H group of fourth amino acid in the chain, disulphide bond, attraction between positive and negative charges, and hydrophobic and hydrophilic radical, which are responsible for the stability to the structure. All amino acids in a polypeptide chain have L- configuration which can result in a stable helix if is right handed structure. Unlike ovalbumin proteins, casein proteins do not interact intramolecularly to from a tertiary structure. Local interactions may occur within the molecule in beta sheet but no interactions occur between the distant part of the same molecule. The molecule has a hydrophobic core. In β-Pleated, the conformation is linear a peptide chain and is stabilized by hydrogen bonding to adjacent parallel chains of the same kind. Steric interactions cause a slight bending of the peptide chains, resulting in a wrinkled distortion (the pleated sheet). Most proteins and large peptides such as ovalbumin have alpha-helix or beta-sheet segments, their tertiary structures may consist of less highly organized turns, strands and coils. Turns reverse the direction of the peptide chain, and are considered to be a third common secondary structure pattern. Beta sheets in ovalbumin are twisted by about 5 to 25° per residue; thus, the planes of the sheets are not parallel. B-pleated sheets that are formed by separate or single polypeptide chains and two neighbouring chains are held by intermolecular hydrogen bonds, arranged in parallel (same direction) or anti parallel. The secondary structure of the protein is the result of interactions of side chains that are located within a few residues of each other. Proteins are sufficiently long that they can eventually fold back on themselves, allowing residues that are farther apart in the primary structure to interact with each other. These interactions give rise to the tertiary structure of the protein. In tertiary structure the protein fold is 3D.Moecules are very compact in this structure .Various amino acids interact (hydrophobic interaction or disulphide bonds) to form a cluster in the centre of the protein which completely folds and bends the protein to gives its required tertiary structure examples include collagen and ovalbumin protein.Ovalbumin is a globular nutrient and storage glycoprotein which plays a vital role in storage of amino acids around the body. Ovalbumin, for example, is the protein present in egg white ( 368 amino acids ), which is present 70% in egg white. The sequence includes six cysteines with a single disulfide bond between Cys74 and Cys121. The amino terminus of the protein is acetylated. Ovalbumin does not have a classical N-terminal leader sequence, although it is a secretory protein. Instead, the hydrophobic sequence may act as an internal signal sequence involved in transmembrane location. This protein is neutral and soluble in water. (Huntington et al, 2001). Ovalbumin is rich in glutamate and aspartate amino acids. It has a tertiary structure and has a hydrophobic core in centre of the spherical shape (soluble in aqueous). The structure is small in length and width and therefore, posses ovoid or spherical shape. Ovalbumin proteins are more complex in conformation than collagen proteins. Collagen protein is a long fibre like structure (parallel polypeptide) that contain three peptide chains which form triple helical structure by intramolecular hydrogen bonds which gives structures its stability. OH residues provide extra strength due to H-bonding, and the glyciene residues which are present in high amount( 33%) allow the protein to coil more tightly, since they fit on the inside of the helix. In a collagen fibre, three of these helices are coiled together to form a rope-like structure called a super helical coil. It is this structure that gives collagen its great strength. The secondary structure (alpha helical conformation) further folds into a tertiary structure. The hydrophobic chains are held interiorly while the hydrophilic chains occur outside, which folds and coils the structure giving stability to the molecule. This tertiary structure is maintained by hydrogen bonds, disulphide bonds, ionic bonds, and hydrophobic interactions. This structure brings distant amino acids side chains closer. Covalent linkages are formed between lysine resides which strengthen the protein structure allowing it to stretch and recoil to original length when needed. (Woster, n.d). Function of proteins Casein, is the milk phosphoprotein containing phosphoric acid esters of serine and threonine, these proteins are important for teeth and bones. Casein proteins are present in milk 70-80% and consist of a high number of proline peptides and have no disulfide bonds. Therefore, there it has moderately little secondary or tertiary structure. Casein is poorly soluble in water but readily dissolves in alkaline or strong acids, exhibiting hydrophobic properties, and appears in milk as a suspension of particles. Casein is also used in the manufacture of adhesives, binders, protective coatings, plastics (such as knife handles and knitting needles), fabrics and food additives and is non-toxic and highly stable. These proteins are rich in lysine which is one of the essential amino acids in milk. Casein proteins differ in different mammals milk such as animals and humans, and are of three types; α, β and γ These differ one another in their molecular weights, rate of migration in an electric field and phosphorus content (Horne, 2002; Wang et al, 2009). Collagen is the most abundant protein in mammals, present in connective tissues (skin, bone, tendons, cartilage, the cornea, etc) which provides rigidity, protection, flexibility and lubrication. This protein is quite insoluble in water and affected by temperature change. Rich in glycine and alanine but also have serine and tyrosine. Contains three long polypeptide chains, each composed of about thousands of amino acids. Thhese chain curl into a regular triple helix, responsible for the elasticity of the skin and tendons .Under high heating these turn into gelation, gelation is soluble in water and gives a viscous solution, which can be used as a glue and as a thickener is food industry. If collagen is partially hydrolysed under mild condition ( acid, heating, etc), the three collagen strands separate into globular, random coils, producing gelatine which has lower antigenicity but still maintains some of its sequence to promote cell adhesion and proliferation (Wang et al, 2009). Many processes can lead to denaturation of protein which means it affects the secondary, tertiary or quaternary structure. Solubility is can result from the various levels of structure. For example, connective proteins are not soluble in water. While ovalbumin proteins are soluble in water and more sensitive to temperature or heating (unlike collagen , these lack glycine sequence) which means it can readily lose its secondary and tertiary structure, a process called denaturation (Huntington et al,2001). When denatured molecules aggregate to form protein network, the process is called coagulation or gel. This protein network formed traps water in food between its meshes to form gel or coagulation giving food its consistent ( egg meat) it is used for water absorbing (thickening) and to stabilise emulsion and foams.When an egg is cooked, the viscosity is reduced and the colour of egg changes, this color change indicates the change in structure that takes place in the albumin proteins during heating. The interactions of both polar and nonpolar units, often causes the protein to fold into spherical conformations. Although ovalbumin proteins are sensitive to denaturation (structural unfolding), some can be remarkably stable. Heating proteins can cleavage hydrogen bonds , ionic or hydrophobic bonds .Protein Structures are sensitive to temperature and PH specially the aggregation of proteins unfold alpha helix content is denatured or destroyed when heated under high temperature. Some proteins are tough and not soluble in water, either bonded covalently or positioned by other forces which are not easily destroyed, examples of conjugated proteins include collagen (Gossett et al, 1984, Huntington et al, 2001). Conclusion The food proteins such as collagen, casein and ovalbumin provide high or low nutritional quality for humans. The quality of food depends on the structure and functional properties of protein. Some of functional properties of proteins are solubility, hydration, viscosity, texturing, formation of dough, emulsifying and foaming properties. Solubility is the ability of proteins to dissolve in water decreases during heat treatment, this loss of solubility has major consequences for emulsifying and foaming properties of protein. Casein, Ovalbumin and Collagen: Structure and Function

Grossmont College Juvenile Justice System and Juvenile Delinquents Worksheet

Grossmont College Juvenile Justice System and Juvenile Delinquents Worksheet.

I’m working on a english multi-part question and need a sample draft to help me study.

Frontline QSundefinedGo to the following link http://www.pbs.org/wgbh/pages/frontline/shows/juve… and choose 1 of the 4 links provided. After reading the article, provide the following:2-3 sentence synopsis of the article and its conclusionsWhat is the central question the judges are being asked?Who do you agree with and why? (provided evidence to back up your opinionWhat role does the family background play in the behavior of the kids? Can you blame the kids’ poor choices on their troubled childhoods or are they responsible for their own actions? Discuss each kidGo to the following linkundefinedhttps://www.blunt-therapy.com/bad-parenting-styles…Read the article and answer the following questions:undefinedMain claim?undefinedEvidence?Intended audience?Final findings/conclusions
Grossmont College Juvenile Justice System and Juvenile Delinquents Worksheet

Principles and Applications of Laser Photogrammetry

essay writer Laser Photogrammetry Abstract This paper will be explaining the working principles and applications of Laser Photogrammetry. Photogrammetry is a Greek word, “pho” meaning light and the photogrammetry meaning measuring with photographs. Thus, photogrammetry can be defined as a 3-dimensional coordinate measuring technique that uses photographs as the fundamental medium for measurement. It is an estimation of the geometric and semantic properties of objects based on images or observations from similar sensors. Traditional cameras, laser scanning and smart phones can be taken as examples of similar sensors. Measurements are made to give the location recognition, interpretation of an image or scenes. The technology has been used for decades to get information about an object from an image, for instance, autonomous cars need to get a better understanding of the object in front of them. The working principle is aerial triangulation in which photographs are taken from at least two different locations, lines of sight are developed from each camera to points on the object. This paper will mainly address the applications of laser photogrammetry. These applications include: recent advances of photogrammetry in robot vision; remote sensing applications and how the technology is aligned to photogrammetry; and the application of photogrammetry in computer vision and the relationships of photogrammetry and computer vision. The robotics application of photogrammetry is a young discipline in which maps of the environments are built and interpretations of the scene are performed. This is usually operated with small drones which give accurate results and updated maps and terrain models. Another application of photogrammetry is remote sensing. As its name indicates, remote sensing is done remotely without touching the object or scene. Remote sensors are used to cover large areas and where contact-free sensing is desired. For instance, there are objects which are not accessible, sophisticated or toxic to touch. Thus, remote sensors can be placed as far as satellites on orbits far away from the scene and photogrammetry plays an important role in interpretations of the scenes or objects. The third application of photogrammetry is in computer visions. In computer visions, the applications of photogrammetry that will be addresses in this paper include: image-based cartography, aerial reconnaissance and simulated environments. Introduction Photogrammetry means obtaining reliable information about physical objects and their environments by measuring and interpreting photographs. It is the science and art of determining qualitative and quantitative features of objects from the images recorded on photographic emulsions. Laser Photogrammetry and 3D Laser Scanning are completely different technologies for different project purposes. The 3D laser scanning, one is using a laser to measure each individual measurement detained, whereas when using photogrammetry, one is using a series of photographs with overlapping pixels to extract 3D information. Qualitative observations are identification of deciduous versus coniferous trees, delineation of geologic landforms, and inventories of existing land use, whereas quantitative observation are size, orientation, and position. Objects’ identification and description of objects are performed by observing the shape, tone and texture of the photographic image. The principal type of photographs used for mapping are vertical photographs, exposed with optical axis. This is illustrated in Figure1, geometry of a single vertical aerial photogrammetry. Vertical photographs, exposed with the optical axis vertical or as nearly vertical as possible, are the principal kind of photographs used for mapping [2]. In a vertical aerial photogrammetry, the exposure station of the photograph is known as the front nodal point of the camera lens. The nodal points are points in the camera lens system such that any light ray entering the lens and passing through the front nodal point will emerge from the real nodal point travelling parallel to the incident light ray [2]. So, the object side of the camera lens has the positive photograph, placed such that all points – the object point, the image point, and the exposure station lie on the same straight line [2]. The line through the lens nodal points and perpendicular to the image plane intersects the image plane at the principal point [2]. The distance measured from the rear nodal point to the negative principal point or from the front nodal point to the positive principal point is equal to the focal length f of the camera lens [2]. The ratio between an image distance on the photograph and the corresponding horizontal ground distance is the scale of an aerial photograph [1]. For a correct photographic scale ratio, the image distance and the ground distance must be measured in parallel horizontal planes [1]. However, this condition does not occur because most photographs are tilted and the ground surfaces are not flat horizontal planes. As a result, scale will differ throughout the format of a photograph, and the photographic scale can be defined only at a point, and is given by equation 1 [1]. Equation 1 is used to calculate scale on vertical photographs and is exact for truly vertical photographs [1]. S= fH–h (1) where: S= photographic scale at a point f = camera focal length H= flying height above datum h= elevation above datum of the point Figure 1: Geometry of a vertical aerial photogrammetry [2] When calculating, flight planning, approximate scaled distances are adequately enough for direct measurements of ground distances. Average scale is found by using equation 2 [1]. Save=f(H–have) (2) where have is the average ground elevation in the photo. Referring to the vertical photograph shown in the Figure 2 below, the approximate horizontal length of the line AB is given by equation 3 [1]. D≅d(H–have)f (3) Where D= horizontal ground distance d= photograph image distance Figure 2: Horizontal ground coordinates from single vertical photograph [1] Again, to get an accurate measurement of the horizontal distances and angles, the scaled variations caused by elevation differences between points must be considered [2]. Horizontal ground coordinates are calculated by dividing each photocoordinate by the true photographic scale at the image point [2]. In equation form, the horizontal ground coordinates of any point are given by equation 4. Xp=xp(H–hp)f (4) Yp=yp(H–hp)f where Xp , Yp = ground coordinate of point p xp , yp = photocoordinate of point p hp = ground elevation of point p Equation 4, uses a coordinate system defined by the photocoordinate axes having an origin at the photo principal point and the x-axis typically through the midside fiducial in the direction of flight [2]. Then the local ground coordinate axes are placed parallel to the photocoordinate axes with an origin at the ground principal point [2]. These equations are exact for truly vertical photographs and are typically used for near vertical photographs. After the horizontal ground coordinates of points A and B in Figure 2 are computed, the horizontal distance is given by equation 5. DAB= [(Xa–Xb)2 (Ya–Yb)2]0.5 (5) The elevations ha and hb must be known before the horizontal ground coordinates can be calculated [2]. If stereo solution is used, there is no need to know the elevations ha and hb [2]. The solution given by equation 5, is not an approximation because the effect of scale variation caused by unequal elevations is included in the computation of the ground coordinates [2]. Another characteristic of the perspective geometry recorded by an aerial photograph is relief displacement. Relief displacement is evaluated when analyzing or planning mosaic or orthophoto projects [4]. Relief displacement can also be used to interpret photo so that heights of vertical objects are obtained. [4]. This displacement is shown in Figure 3, and is calculated by equation 6 [2]. d=d(H–hbase)rtop (6) where: d= image displacement r= radial distance from the principal point to the image point H= flying height above ground Since the image displacement of a vertical object can be measured on the photograph, Equation 6 can be solved for the height of the object to obtain the vertical height of the object, ht which is given by equation 7. ht= d(H–hbase)rtop (7) where: hbase = elevation at the object base above datum Figure 4: Relief Displacement on a Vertical photograph [1] All photogrammetric procedures are composed of these two basic problems, resection and intersection. There are photogrammetric problems which are solved by Analog and Analytical solutions. Resection is the process of recovering the exterior orientation of a single photograph from image measurements of ground control points [4]. In a spatial resection, the image rays from total ground control points (horizontal position and elevation known) are made to resect through the lens nodal point (exposure station) to their image position on the photograph [4]. The resection process restores the photograph’s previous spatial position and angular orientation, that is when the exposure was taken. Intersection is the process of photogrammetrically determining the spatial position of ground points by intersecting image rays from two or more photographs [4]. If the interior and exterior orientation parameters of the photographs are known, then conjugate image rays can be projected from the photograph through the lens nodal point (exposure station) to the ground space. Two or more image rays intersecting at a common point will determine the horizontal position and elevation of the point. Map positions of points are determined by the intersection principle from correctly oriented photographs. The Analog solution is one of the methods of solving these fundamental photogrammetric problems. The Analog solutions use optical or mechanical instruments to form a scale model of the image rays recorded by the camera [2]. However, the physical constraints of the analog mechanism, the calibration, and unmodeled systematic errors limit the function and accuracy of the solution [4]. The analytical photogrammetry solution is the second solution that employs mathematical model to represent the image rays recorded by the camera [2]. The collinearity condition equations include all interior and exterior orientation parameters required to solve the resection and intersection problems accurately [2]. Analytical solutions consist of systems of collinearity equations relating measured image photocoordinates to known and unknown parameters or the photogrammetric problem [4]. Working Principles of Photogrammetry- Aerotriangulation Aerial triangulation is defined as the process of determining x,y and z ground coordinate of individual points on measurements from the photograph [4]. The aerotriangulation geometry along a strip of photography is illustrated in Figure 6 [4]. Photogrammetric control extension requires that a group of photographs be oriented with respect to one another in a continuous strip or block configuration [4]. A pass point is an image point that is shared by three consecutive photographs (two consecutive stereomodels) along a strip. The exterior orientation of any photograph that does not contain ground control is determined entirely by the orientation of the adjacent photographs. Benefits of Aerial Benefits include: minimizing delays and hardships due to adverse weather condition; access to much of the property within the project area is not required; field surveying in difficult area, such as Marshes, Extreme slope, hazardous rock formation, etc; can be minimized. Aerial Triangulation is classified three categories: Photogrammetric projection method (analogic or analytical) [4]. Strip or block formation and adjustment method (sequential or simultaneous) [4]. Basic unit of adjustment (strip, stereomodel, or image rays) [4]. Figure 6. Aerotriangulation geometry Application of Photogrammetry Robot vision Robot vision systems are an important part of modern robots as it enables the machine to interact and understand with the environment; and to take necessary measurements. The instantaneous feedback from the vision system which is the main requirements of most robots is achieved by applying very simple vision processing functions or/and through the hardware implementation of algorithms [3]. One of the examples of this application is called close-range photogrammetry which is used in time-constrained modes in robotics and target tracking [3]. Photogrammetry and Remote Sensing Applications Remote sensing collects information about objects and features from imagery without touching them. It is mainly used to collect and derivate 2D data from all types of imagery, for instance slope. Photogrammetry is associated with the production of topographic mapping generally from conventional aerial stereo photography [5]. Today photographs are taken high-precision aerial cameras, and most maps are compiled by stereophotogrammetry methods. The advantage of Aerial Photogrammetry and Topographic Mapping is that it is cost effective when ground survey methods could not cover large areas. The map shows land contours, site conditions and details for large areas. The conventional aerial photography can produce an accurate mapping at scales as large as 1:200. The accuracy is achieved by employing improved cameras and photogrammetric instrumentations. After an area has been authorized for mapping, the planning and procurement of photography are the first steps in the mapping process. The necessary calculations are made on a flight design worksheet. The flight planned chooses the best available basement on which to delineate the design flight lines. The final plan gives the location, length, and spacing of flight strips. Computer Visions The goals of Computer Visions are for object recognition, navigation, and object modeling. Today’s Object recognition algorithms function according to the data flow shown in the Figure 7 below. Image features are extracted from the image intensity data such as: regions of uniform intensity, boundaries along high image intensity gradients, curves of local intensity maxima or minima (line features), and other image intensity events defined by specific filters(corners) [4,6]. In order to get high level measurements, these features are processed further. For instance, part of a step intensity boundary may be approximated by a straight-line segment and the properties of the resulting line are used to define the boundary segment. Formation of a model for each class is the next step in recognition, in which the algorithms store the feature measurements for a particular object, or a set of object instances for a given class, and then use statistical classification methods to classify a set of features in a new image according the stored feature measurements [4,6]. The second goal of the computer visions is the navigation modelling. The goal of navigation is to provide guidance to an autonomous vehicle. The vehicle is to maintain accurate following along a defined path. In the case of a road, it is desired to maintain a smooth path with the vehicle staying safely within the defined lanes. In the case of off-road travel, the vehicle must maintain a given route and the navigation is carried out with respect to landmarks [6]. The third object of computer visions is object modeling. In object modelling, a complete and accurate 3D model of an object is recovered [6]. The model can then be used for different applications, such as: to support object recognition, and for image simulation. In image simulation, the image intensity data is projected onto the surface of the object to provide realistic image of the object from any desired viewpoint [6]. Computer vision methods is also used for defect detection assessment and is illustrated in Figure 8. Figure 8 shows that the general computer vision pipeline starting from low-level processing up to high-level processing. Correspondingly, the bottom part of Figure 8 labels specific methods for the detection, classification and assessment of defects on civil infrastructure into pre-processing methods, feature-based methods, model-based methods, pattern-based methods, and 3D reconstruction [6]. These methods, however, cannot be considered fully separately. Rather they build on top of each other. For example, extracted features are learned to support the classification process in pattern-based methods [6]. Figure 7: The operational structure of object recognition algorithms. Figure 8: Categorizing general computer vision methods (top) and specific methods to defect detection, classification and assessment of civil infrastructure. Future Innovations and Developments These days, close range photogrammetry uses digital cameras with capabilities that will result in moderate to very high accuracies of measurement of objects. To improve robot’s vision capabilities, two alternatives are suggested and studied for future: (a) hardware implementation of more complex image analysis functions with consideration of photogrammetric methodology, or (b) design of a robot “insect-level” intelligent system principle, based on the use of a great variety of different, simultaneous, but simple sensor functions [3]. In computer visions, the long-term goal of computer vision with respect to aerial reconnaissance applications is change detection [6]. In this case, the changes from one observation to the next are meant to be significant changes, that is, significant from the human point of view [6]. Thus, in order to define only significant change, it is essential to be able to characterize human perceptual organization and representation. Conclusion When one is looking to deploy one technology over the other for a given project purpose, it is a question of how large an area is required to be collected and how accurately it needs to be collected. Photogrammetry can easily help us to acquire large scale data, has ability to record dynamic scenes, records images to document the measuring process and can automatically process data, possibly for real-time processing. The disadvantages of photogrammetry are: the necessity of light source, the flaws in measurement accuracy, and the occlusions and visibility constraints. The performance of photogrammetry can be improved by using computer simulations which is more automatic to be deployed on places which are difficult to operate. The enormous contribution to heritage conservation cannot be overstated since photogrammetry is particularly preferred for monitoring purposes, like construction sites. Works Cited Hamilton Research Group. “Chapter 10: Principles of Photogrammetry.” In Physical Principles of Remote Sensing (3rd Edition). Cambridge University Press, New York, 2013 441pp. Lillesand, Thomas M, et al. Remote Sensing and Image Interpretation. 6th ed., John Wiley

Fundamentals of Corporate Finance

Fundamentals of Corporate Finance.

Complete the following Questions and Problems from each chapter as indicated. Show all work and analysis. Prepare in Microsoft® Excel® or Word. Ch. 9: Questions 7 & 8 (Questions and Problems section) 7. Calculating IRR [LO5] A firm evaluates all of its projects by applying the IRR rule. If the required return is 14 percent, should the firm accept the following project? See attachment for chart 8. Calculating NPV [LO1] For the cash flows in the previous problem, suppose the firm uses the NPV decision rule. At a required return of 11 percent, should the firm accept this project? What if the required return is 24 percent? Ch. 10: Questions 3 & 13 (Questions and Problems section) 3. Calculating Projected Net Income [LO1] A proposed new investment has projected sales of $635,000. Variable costs are 44 percent of sales, and fixed costs are $193,000; depreciation is $54,000. Prepare a pro forma income statement assuming a tax rate of 35 percent. What is the projected net income? 13. Project Evaluation [LO1] Dog Up! Franks is looking at a new sausage system with an installed cost of $540,000. This cost will be depreciated straight-line to zero over the project’s five-year life, at the end of which the sausage system can be scrapped for $80,000. The sausage system will save the firm $170,000 per year in pretax operating costs, and the system requires an initial investment in net working capital of $29,000. If the tax rate is 34 percent and the discount rate is 10 percent, what is the NPV of this project? Ch. 11: Questions 1 & 7 (Questions and Problems section) 1. Calculating Costs and Break-Even [LO3] Night Shades, Inc. (NSI), manufactures biotech sunglasses. The variable materials cost is $9.64 per unit, and the variable labor cost is $8.63 per unit. a. What is the variable cost per unit? b. Suppose NSI incurs fixed costs of $915,000 during a year in which total production is 215,000 units. What are the total costs for the year? c. If the selling price is $39.99 per unit, does NSI break even on a cash basis? If depreciation is $465,000 per year, what is the accounting break-even point? 7. Calculating Break-Even [LO3] In each of the following cases, calculate the accounting break-even and the cash break-even points. Ignore any tax effects in calculating the cash break-even. See attachment for chart
Fundamentals of Corporate Finance

Alabama Leadership Strategy Core Concepts and Analytical Approaches Discussion

Alabama Leadership Strategy Core Concepts and Analytical Approaches Discussion.

Discussion 6: Leadership Strategy Best Practices Throughout this program, you have examined the many ways in which quality leadership can bring forth powerful outcomes for organizations. There are many companies that, on the brink of failure, have been revitalized and become successful due to guidance and direction of a new CEO or management team. Similarly, there are many companies that have had to close their doors due to the incompetent decision making of those at the top. In this Discussion, you will consider the concepts that you explored while completing this program and explain how you would employ leadership best practices to develop and incorporate an effective strategy. To prepare for this Discussion: Review this week’s Learning Resources on strategy execution and leadership. Reflect on the concepts and practices you have studied throughout this program related to leadership, management, and the development and execution of business strategy. Consider what you believe to be the best practices that leaders should utilize for effective strategy execution and implementation. Review the Academic Writing Expectations: Capstone Courses document, provided in this week’s Learning Resources. Post a 250- to 325-word (2- to 3-paragraph) synthesis of leadership best practices for creating a corporate culture that supports effective strategy execution and implementation. In your synthesis, address the following: What are your top five leadership best practices that—as a leader—you would employ to create an organizational culture that would enable effective strategy execution and implementation? For each best practice, provide a rationale for why you included it. To support your response, be sure to reference at least one properly cited scholarly source. Required Resources Strategy Execution and Leadership A company can have the greatest strategy ever devised, but it will be worthless if it is unable to execute it. This is when a company’s leaders serve an important role in not only implementing the strategy, but also believing in it and showing the rest of the company that they should believe in it too. Through these resources, you will examine leadership’s role in executing strategies. Thompson, A. A. (2018–2019). Strategy: Core concepts and analytical approaches (3rd ed.) [BSG electronic edition]. Burr Ridge, IL: McGraw-Hill Education. Chapter 11, “Managing Internal Operations: Actions That Promote Good Strategy Execution” (pp. 218–233)Chapter 12, “Corporate Culture and Leadership: Keys to Good Strategy Execution” (pp. 234–252) https://www.arcaspicio.com/insights/the-importance-of-culture-in-strategy-execution
Alabama Leadership Strategy Core Concepts and Analytical Approaches Discussion