Get help from the best in academic writing.

Health and Safety in the Production Plant Environment

4.1 INTRODUCTION Environmental and safety are the aspects that need to be considered in any production plant as these aspects could affect the production process, human health, and environment. Raw materials, product, by-product, and equipment are the most important elements included in safety measurement of production plant. In this chapter, every element that could be hazard to human and environment are discussed for example how raw materials and equipment could be a threat to human and how by-product could be a threat to environment. This chapter will be discussed on how to apply and implement Hazard Identification, Risk Assessment and Risk Control (HIRARC) according to designated plant. Enforcing the law of Occupational Safety and Health, HIRARC are greatest important. 4.2 SAFETY CONSIDERATION In order to maintain optimum productivity of plant production, employee and employers have to work together to ensure a safe work place for manpower activities. Plus, the need of safe work place environment and safety consideration to protect people from any hazard are utmost important. Efficient method to identify the risk involving process and implement the most practical and applicable measure to reduce and manage the risk is by implementing Hazard Identification, Risk Assessment and Risk Control (HIRARC). 4.2.1 Objective of Hazard Identification, Risk Assessment and Risk Control (HIRARC) HIRARC is a fundamental of basic risk management in management, operation, and practice of planning of a business. The purposes of HIRARC are as follows To identify any element that could be hazard to employee and others To consider the chances of any harms to be hazard in the circumstances of a particular case and possible severity obtained from those harms To enable employee planning an optimum safety measures to ensure the risks are controlled all the time 4.2.2.1 Material Safety Data Sheet (MSDS) MSDS is list of information on the hazards, safety and emergency measures related to specific products. All the information about the product and by product will be list in this sheet and the hazard of the product will also be identified. 4.2.2.2 Hazard Identifications Hazard identification means the identification of unwanted events that brings to materialisation of the hazard and the mechanism by which those unwanted events could occur. In other word, to identify hazard that can cause injury exist around the plant which can be separate into three main groups, health hazards, safety hazards, and environmental hazards. Therefore, it can be simplified that there are three types of common accident based on the past study. The utmost accident that happened in chemical plants is fire, followed by explosions and toxic release. 4.2.3 Chemical Hazard and Risks in the Workplace In chemical safety term, “hazard” refers to the inherent hazardous properties of a chemical or chemical operation, while “risk” generally means the likelihood of the hazardous properties of a chemical that may cause harm to the people surrounding and the severity of that harm. The risk dealing with chemical or in a chemical operation depends on the inherent hazard, the working environment, physical form of the chemical involved and the method of handling and lastly the operating procedures. 4.2.4 Chemical Hazards of Vinyl Acetate Monomer (VAM) VAM is a flammable, reactive, colourless liquid that is partly soluble in water. At higher levels, VAM odour could be sharp and irritating while it has fruity smell when at lower levels. Flammability VAM is a flammable liquid with flash point is below 37°C. It form flammable vapour when mix with air at room temperature. Plus, its vapours are heavier than air and may travel a long distance to an ignition source such as a flame or electric spark and then flash back. Reactivity VAM is a reactive molecule and it could polymerize uncontrollably if did not handled or stored properly. Prolonged or intense exposure to heat, sunlight, ultraviolet light or x-rays may result in polymerization. Furthermore, spontaneous polymerization may also result from exposure to amines, strong acids, alkalis, silica, alumina, oxidizing agents. However, hydrolysation in water not considered as hazardous reaction. Health Effects VAM is irritating to the upper respiratory tract, skin and eyes. Potential hazard to eyes are irritation, redness and swelling but cause a low acute toxicity by all routes of exposure. Report based on lab experiment stated that high level inhalation exposure to VAM in animal results in deaths from pulmonary edema. Moreover, lifetime drinking water or inhalation exposure to VAM shown cancer effects in laboratory animals which tumor reported localize directly to attached part with VAM. Tumor observed at high exposure concentrations are not considered to be relevant to humans exposed to low concentrations under typical use conditions. Environmental Effects VAM tends to stay in the air where it is rapidly degraded by photochemical pathways. It has 0.6 days atmospheric half-life and 7 days hydrolytic half-life at pH 7 and 25°C. Volatilization of VAM could occur once it is released to soil or water. In case of effect of VAM to water, VAM partitions mostly to the water where it undergoes hydrolysis and it is readily biodegraded by either anaerobic or aerobic mechanisms. Plus, VAM is considered to be moderately toxic to aquatic organisms. In conclusion, VAM considered non-harmful to environment. 4.2.5 Chemical Hazards of Acetic Acid At temperature above 16.7 °C, acetic acid is described as clear, colourless, combustible liquid with a pungent odour which is smell like vinegar. Flammability Acetic acid has a flash point of 39 °C. Autoignition’s temperature of acetic acid is at 427 °C and dilute acetic acid solutions are not combustible. Fire involving acetic acid should be fought upwind and from the maximum distance possible. Moreover, vapour explosion of acetic acid may occur indoors, outdoors, or maybe in sewer. Vapour travel to a source of ignition and flash back. Reactivity Overall, acetic acid is unstable at heating and freezing temperature. The vapour of acetic acid will form explosive mixtures with air. Plus, reaction of acetic acid with chromic acid, ammonium nitrate, sodium peroxide, nitric acid, phosphorus trichloride, or other oxidizers could cause fires or explosions. In case of hazardous decomposition, toxic gases like carbon dioxide and carbon monoxide may be released as acetic acid heated to decomposition. In concentrated form, acetid acid is highly corrosives. Health Effects Exposure to acetic acid may occur through inhalation, ingestion, skin contact and absorption through the skin. Based on lab experiment, glacial acetic acid is corrosive to tissues while concentrated acetic acid can cause moderate to severe burns. In addition, vapour acetic acid also can cause eye, skin, mucous membrane, and upper respiratory tract irritation upon exposure. In case of effect on humans, acetic acid may irritate eyes, mucous membrane, upper respiratory tract and skin. Environmental Effects Acetic acid environmental effects depend on the concentration and duration of exposure. It can be a threat to plants, animals, and aquatic as it comes in high concentration. Acetic acid exposed to environment as a vapour and it also soluble in water but it degrades rapidly into harmless substance once releases to environment. 4.2.6 Chemical Hazard of Ethylene Ethylene is a gaseous with boiling point of -104 °C at atmospheric pressure and it is stored in the liquid state under high pressure or at low temperature. Plus, it has solubility in water of 131 mg/l at 20 °C. Flammability Ethylene gas is highly flammable and explosive. Reactivity Ethylene is reactive substances because of double bond structure present in the alkenes. Due to its high reactivity, ethylene may undergo a lot different reactions such as oxidation, halogenation, alkylation, hydration, and polymerisation. Human Health Ethylene has low toxic level and risk to human health is minimal. It is identified from occupational exposure, general public exposure, and directly or indirectly exposure to environment but exposure to the gas can cause dizziness, lightheaded, and perhaps pass out. However lab experiment stated that ethylene is metabolised to ethylene oxide which can cause cancer from carcinogenic and mutagenic effect. Environmental Effect Due to its physical and chemical properties, ethylene is released mainly into the atmospheric compartment. About three quarters of atmospheric ethylene originates from natural sources, while one quarter is from anthropogenic sources. The main anthropogenic release is from burning of hydrocarbons and biomass. 4.2.7 Chemical Hazard of Oxygen Oxygen is an odourless, colourless, non-flammable gas. It is an oxidizing gas and could accelerates combustion. Oxygen is stored in cylinders at high pressure. Flammability Oxygen is a non-flammable gas Reactivity Oxygen vigorously accelerates combustion. Some non-combustible materials could burn with presence of an oxygen enrich atmosphere which is greater than 23%. Oxygen may form explosive compounds as exposed to combustible materials such as oil, grease, and other hydrocarbon material. Plus, heat applied on a container with oxygen can cause pressure increase hence cause container rupture. Human Health If oxygen is inhaled as much as 80% or above at atmospheric pressure for more than a few hours, it may cause nasal stuffiness, cough, sore throat, chest pain, and breathing difficulty. Moreover, breathing pure oxygen under pressure may cause lung damage and also central nervous system effects which cause dizziness, poor coordination, tingling sensation, visual and hearing disturbances, muscular twitching, unconsciousness and convulsions. Environmental Effect Highly concentrated sources of oxygen promote rapid combustion and therefore are fire and explosion hazards in the presence of fuels. 4.2.9 Personal Protective Equipment PPE is equipment that will protect the user against safety at work. By this, that person will be protected against one or more risks arising from chemical or chemical operation to the person’s health or safety. OSHA 1910.132 requires employers to determine the proper personal protective equipment for each hazard and to train any employees the guidelines how and when to wear safety protective equipment. Example of personal protective equipment listed for the use of handling of chemicals can be classified into following categories such as protective clothing, hand and foot protective gears, eye and face protective equipment and last but not least the respiratory protective equipment. This protective equipment may save your life in any danger situation. 4.2.9.1 Protective Clothing Protective clothing may refer which gear that literally can protect body or personal clothing from contact with dangerous chemical or any spread of contamination in workplace. This may include gowns, aprons and overalls. This chemical resistance that may affect the quality of the protective clothing are the resistance to degradation of the chemical due to the spread of chemical and the permeability of the chemical. Proper selection of protective clothing may result in a better in safety and health such as any dangerous chemical operations depends on the risks involved. Suitable material of protective clothing should be in good quality and appropriate form in order to provide protective if any danger occurred. Handling of chemical is a risk that may happen if not handled it properly, protection can be achieved by the personal clothing such as gowns and overalls made of synthetic material based of terylene or nylon with a water repellent finish. 4.2.9.2 Hand Protective Gears Hand protective gears may protect the hand and arm from any spills of the chemical and by prevent the spread of contamination. Generally gears are gloves used in industry. The selection of gloves usually must be based on the hazard occurred in the industry. In production of plant typically involved dangerous chemical when operating the process. In consideration, reference should be considered in order to categorise based on the chemical resistance properties and physical characteristic of the glove. The Chemical resistance, thermal protection and mechanical strength should be considered when in any different path of industry. Chemical resistance of the protection level depends on the glove material itself, the method of construction and thickness of the gloves. It should be aware that chemical resistance property of gloves may be adversely affected by abrasion and heat. For thermal protection gloves may made from neoprene which can be used for handling oils at low temperatures and cotton gloves can operate against moderate heat level. 4.2.9.3 Foot Protection Gears Foot protective gears protect the foot and leg from any dangerous chemical and to prevent the spread of contamination. Foot protection gears are shoes or boots. The footwear is selected based on the hazard involved and from the working environment. Mostly in plant, it is best to wear a safety boots, in order to prevent any unsafe accident occur. The type of injury should be related to the risk of the injury, the foot should at least be protected by well-made shoes. In cases it depends on the risk of the parts of the body being injured as example of ankle, knee or thigh. 4.2.9.4 Eyes and Face Protection Equipment In process of chemical operation, eye or face might be need a protective equipment in order to prevent any hazard of splashes of hot or any dangerous liquid chemicals, flying object as example of bursting containers, any dust or vapour that might be harmful to eye and face and lastly the intense light from the radiation emitted to the chemical process. By that, safety goggles should be wearing during the process operation. Other than that, face shield with adjustable head harness that may protect the face but not fully at the ayes area. Besides, eye and face protective equipment is also available in tints and shades for the protection of radiation or intense light from the chemical operation. 4.2.9.5 Respiratory Protective Equipment The potential of exposure in MEK plant may achieve 200 ppm, therefore the use of respiratory protective equipment is important in order to prevent the harmful of gas through the respiratory system. Respiratory protective system equipment also used to provide breathing air when working in any dangerous chemical environment where the presence of chemicals in air at high concentration. Be sure to consider all potential exposures when working in place where dangerous chemical exposure occurred. Combination of filters, prefilters or cartridges to protect against different types of form such as mist, vapour, dust and other chemical mixtures must be relates. Exposure of 3000 ppm and above, the situation is absolutely dangerous to life and health. The range of exposure must be less than 3000 ppm and if possible use a NIOSH approved self-contained breathing apparatus just to make sure the better quality and protection approved by the NIOSH. 4.3 RISK ASSESSMENT Risk analysis that is most effective is one that uses likelihood and severity in qualitative method. The result are present in a risk matrix is very effective method of communicating the distribution of the risk at the plant area workplace. The likelihood of an event occurring range from “most likely” to “inconceivable” are where the value came from. As shown in the table below of likelihood using the following values: Table 4.1: Likelihood LIKELIHOOD EXAMPLE RATING Most likely The most likely result of the hazard/event being realized 5 Possible Has a good chance of occurring and is not unusual 4 Conceivable Might be occur at some time in future 3 Remote Has not been known to occur after many years 2 Inconceivable Is practically impossible and has never occurred 1 Source: DOSH HIRARC Guideline The severity is categories into five elements. The increasing level of severity to an individual’s health, property and environment that is present in the table below: Table 4.2: Severity SEVERITY (S) EXAMPLE RATING Catastrophic Numerous fatalities, irrecoverable property damage and productivity 5 Fatal Approximately one single fatality major property damage if hazard is realized 4 Serious Non-fatal injury, permanent disability 3 Minor Disabling but not permanent injury 2 Negligible Minor abrasions, bruises, cuts, first aid type injury 1 Source: DOSH HIRARC Guideline Table 4.3: Likelihood vs Severity Severity (S) Likelihood(L) 1 2 3 4 5 5 5 10 15 20 25 4 4 8 12 16 20 3 3 6 9 12 15 2 2 4 6 8 10 1 1 2 3 4 5 Source: DOSH HIRARC Guideline The priority is determined based on the following risk category for necessary actions . Table 4.4: Risk Category RISK DESCRIPTION ACTION 15-25 HIGH A HIGH risk requires immediate action to control the hazard as detailed in the hierarchy of control. Actions taken must be documented on the risk assessment form including date for completion. 5-12 MEDIUM A MEDIUM risk requires a planned approach to controlling the hazard and applies temporary measure if required. Actions taken must be documented on the risk assessment from including date for completion. 1-4 LOW A risk identified as LOW may be considered as acceptable and further reduction may not be necessary. However, if the risk can be resolved quickly and efficiently, control measure should be implemented and recorded. Source: DOSH HIRARC Guideline 4.4 RISK CONTROL

Limiting the Production of Drugs

But because no other crop came even close to the value of poppies, we needed the threat of eradication to force farmers to accept less-lucrative alternatives. (Eradication was an essential component of successful anti-poppy efforts in Guatemala, Southeast Asia and Pakistan.) But Karzai had long opposed aerial eradication, saying it would be misunderstood as some sort of poison coming from the sky. He claimed to fear that aerial eradication would result in an uprising that would cause him to lose power.”

• How can we effectively limit the production of drugs when the countries they are grown in do not cooperate?

• Should U.S. policy emphasize stopping production in other countries over reducing demand in the U.S.?

• Should the U.S. assist with crop substitution?

DePaul University WK 5 Consumer Choice Model & Market Segmentation Discussion Paper

assignment writer DePaul University WK 5 Consumer Choice Model & Market Segmentation Discussion Paper.

1.)Go over the Consumer Choice Model, discuss the 5 Values and apply them to the Tesla Corporation.2.)Go over the Model of Consumer Decision-Making in Chapter 15.3.)Discuss each of the External Influences (Culture, Subculture, Reference Groups, Social Class, Family) and highlight a specific Figure, Table, etc. from Chapters 9, 10, 11, and 12 that you think represent the most important insight into each influence.4.) Discuss Market Segmentation and Strategic Targeting in Chapter 3. Your answer to each question cannot exceed 2 pages in Word (I am assuming you will be using single-spacing).Your answer can be shorter than 2 pages, but I would recommend that you use the full 2 pages to indicate to me that you have acquired as much information as possible.
DePaul University WK 5 Consumer Choice Model & Market Segmentation Discussion Paper

History of the Non-Profit Sector Essay

Table of Contents Introduction A history of Non profit organizations Non profit organization Values Justification of public good and utility The value of public representation Theories regarding the establishment of nonprofit organizations Conclusion References Introduction Non profit organizations have always been considered as voluntary organizations that are officiated by private contributions. They are also regarded as silent contributors to the welfare of the public as well as the personal interests of individuals in society. The main difference between non-profit and profit organizations is that profit organizations core obligation is to gross income and reallocate assessable wealth to the workforce as well as the shareholders while non-profit organizations core obligation is to provide self-beneficial and self preservation programs and services. Consequently it is common to find volunteer human resources as well as volunteer executives who perform various roles without receiving any form of reparation. Charitable organizations, trade unions, public arts organizations as well as several other governments and government agencies all form examples of non-profit organizations which are sometimes referred as not-for-profit organizations. Due to the self-interest goals perpetuated by these organizations as well as their role in society, most nations choose to exempt NPOs from revenue and property duty since the governments fail to execute or enforce policies proposed by the NPOs. In essence, non-profit organizations are able to make a profit which is referred to as surplus and calculated at the end of every fiscal year; these earnings are retained as working capital for the internal mechanisms of the organization as well as further expansion plans rather than being distributed as dividend, shares or debentures. In most cases, NPOs use the surplus funds to hire new staff, reward the internal corporate leadership through bonuses and benefits. The mid- level management staff along with the entire human resource of the NPOs also receive incentives at the end of the year through the surplus funds. This essay aims at discussing the history of non profit organizations as well as the transformations that have taken place in the organizations over the years. A history of Non profit organizations According to Kranshinsky (1996), the non profit sector has existed in Europe and the United States since the eighteenth century though the organizations have only recently become prominent and a widely accepted aspect of the western society. The organizations’ initial operation system was strictly for charitable reasons meaning the non profit organizations in the 18th and 19th centuries never carried out business transactions. The non profit organizations of the early period depended entirely on funds donated by the financiers (Morris, 2000). Get your 100% original paper on any topic done in as little as 3 hours Learn More A survey in America revealed that there were slightly more than 12,000 charitable tax-exempt organizations that had no religious support while currently more than half a million of such organizations exist in America alone(Hammack, 2002). The department of trade was initially responsible for authorizing non profit organizations on behalf of the government though congress and state legislatures were later given that mandate as well as the power to establish which sort of non-profit organizations meet the requirements to be excused from paying taxes. In the 1960s, there was a rise in the number of non profit organizations in third world countries as an increasing number of communities were identified as needy either through education, food, clothing or shelter (Hammack, 2002). As a consequence, the number of NPOs in South America, Africa and Asia almost doubled in a span of less than ten years (Kranshinsky, 1996). In addition, the discovery of fatal untreatable diseases such as AIDS, Ebola, and cancer among other diseases acted as a catalyst for the augmentation of NPOs that sought to research on specific diseases and provide a cure or disease management programs (Morris, 2000). Affluent members of the public were encouraged to provide support and promote several other non profit organizations (Powell

Assignment 4: Supply Chain Management and Financial Plan

Assignment 4: Supply Chain Management and Financial Plan.

“One of the most important steps in launching a new business venture is fashioning a well-designed, practical, realistic financial plan.” (Scarborough & Cornwall, 2015, p. 454).With this assignment, you are creating two important elements of a financial plan: an Income Statement and Balance Sheet. You also are preparing an outline of a presentation of your business plan to potential investors or lenders.Using the business you created from Assignments 2 and 3, write a three to four (3-4) page paper in which you:Prepare a simple pro forma (projected) income statement and balance sheet for the first two years of operation, using income projections and incorporating an advertising plan.Outline a plan for hiring and retaining competent, motivated employees for your business.Prepare an outline for a “pitch,” i.e., a short 20-30 minute business plan presentation that will be made to lenders or investors.Include at least two (2) references outside the textbook.Your assignment must follow these formatting requirements:This course requires use of Strayer Writing Standards (SWS). The format may be different than other Strayer University courses. Please take a moment to review the SWS documentation for details (more information and an example is included in the Strayer Writing Standards left menu link).Include a cover page containing the title of the assignment, the student’s name, the professor’s name, the course title, and the date. The cover page and the reference page are not included in the required page length.The specific course learning outcomes associated with this assignment are:Analyze the key financial management considerations in operating a small business, including sources of financing.Determine the various control and support functions needed to manage a small business.Use technology and information resources to research issues in small business management.Write clearly and concisely about small business management using proper writing mechanics.Click here to view the grading rubric.By submitting this paper, you agree: (1) that you are submitting your paper to be used and stored as part of the SafeAssign™ services in accordance with the Blackboard Privacy Policy; (2) that your institution may use your paper in accordance with your institution’s policies; and (3) that your use of SafeAssign will be without recourse against Blackboard Inc. and its affiliates.
Assignment 4: Supply Chain Management and Financial Plan