Get help from the best in academic writing.

ECO 3351 TU Macroeconomics how To Start a International Trade Research Paper

ECO 3351 TU Macroeconomics how To Start a International Trade Research Paper.

ECO 4451 International Trade Research Paper
 The text of your paper (not including bibliography) must be approximately
1500 words – absolutely no less than 1300 words.
 You must include a bibliography. Use either MLA or APA format.
o MLA:…
o APA:…
 You must include at least two refereed journal articles within your citations.
 You must use third-person format. (No “I” or “you”)
 No title page, no table of contents
 Abstract optional (if you choose to include an abstract, it should be no longer
than 150 words)
 Times New Roman, size 12 font (title can be larger)
 Standard margins
 Double-space
ECO 3351 TU Macroeconomics how To Start a International Trade Research Paper

Positive and negative arguments for Scientist Practitioner model. The Scientist-Practitioner model has become the most prevalent and favoured training model for clinical psychologists (see Kanfer, 1990; Page, 1996). I will argue that despite there being (seemingly) far more negative arguments for this model that the scientist practitioner model is not ‘out-dated’ and still has a lot to offer. In order to do this, it is essential to examine the positive and negative aspects of the model. However, it is necessary to first gain an understanding of the model. I will do this by discussing key elements of the model. Next, I will discuss the development and historical background of the scientist-practitioner model. After establishing these, I will then provide positive and negative arguments for this model. Then, I will discuss the future direction in psychological teaching for the scientist-practitioner model. Key elements help provide an insight into what the scientist-practitioner model (or Boulder model) is. Stricker (2002) defines the key features of the model as: (a) In the process of doing clinical work, they display a questioning attitude and search for confirmatory evidence; (b) they apply research findings directly to practice; (c) they undertake an evaluation of their individual practices, and; (d) they produce research, either collaboratively or more traditionally. In summary, the scientist-practitioner model creates a basis for understanding on which science and practice are built together. Clinical psychologists should incorporate both these aspects when assessing/diagnosing, in therapy and research. As early as 1947, there have been calls for psychologists to be trained as both scientists and practitioners (e.g. Thorne, 1947). Shakow (1947) proposed a report (‘Shakow report) to the American Psychological Association (APA), requesting that training criteria be established which trained psychologists as scientists, with a specific focus on assessment/diagnosis, treatment and research. This report, according to Baker and Benjamin Jr (2000, p. 244) became “the central working document of the Boulder conference”. In 1949, the first national training conference for clinical psychologists was held in Boulder, Colorado (see Kanfer, 1990; Raimy, 1950; Thorne, 1947). At this conference, it was decided that an integrated approach to science and practice be applied by clinical psychologists, and as a result the scientist-practitioner model (or Boulder model) was established (see Page, 1996). Now that it has been established how the model was developed, it is equally important to discuss the reasons as to why it was developed. As previously mentioned, the model was developed to encourage an integrated approach between science and practice; however, another important factor was the demand for psychologists post World War II. As John (1998), Barker, Pistrang,Positive and negative arguments for Scientist Practitioner model
Wal-Mart attained its present stature as a leader of discount retailer solely due to the innovative vision of its founder Sam Walton. Wal-Mart still today follows the traditional goals and philosophies left behind by Sam, coupled with the practice of keeping one step ahead of ever changing technologies and the nature of the business environment in which it operates. In spite of the controversies over different issues confronting it and still being faced, the future is bright, if and only if it strikes a comfortable balance seen increasing in its profit and recognizing its social and ethical responsibilities. Evaluation of Design process: The success of Wal-Mart lies mainly due its sound managerial decisions and the innovative implementation of sustainability strategies to dramatically reduce the company’s impact on the global environment and in an effort to become “the most competitive and innovative company in the world”. The company believed in the three cardinal principles, that is “To be supplied 100 percent by renewable energy; to create zero waste; and to sell products that sustaining our resources and the environment.” The gist of the decision implementation by Wal-Mart lies in its ability to build a solid working relationship with both suppliers and employees, taking note of the most intricate details in store layout and necessary merchandising techniques, capitalizing in every cost saving technique, and creating a high performance spirit. Below are some of the important strategies implemented by Wal-Mart which were responsible for its success. One of it first initiative was to launch a campaign to encourage its suppliers to provide environment friendly and safe products in recyclable or biodegradable packaging at no additional cost. Wal-Mart intended to influence its suppliers to spend more on R
Week 6 Autism Spectrum Assignment (NCU).

InstructionsThe research on ASD treatment strongly suggests that parental participation in the implementation of any intervention plays an important role in improving outcomes. Especially with young children, parents are very likely to be the most influential person in a patient’s life; therefore, they may be the individuals most capable of implementing effective behavior change. Those parents will need training to become the change agents in their child’s life. This will involve providers assessing their child’s needs and goals, designing the appropriate (evidence-based, but individualized) intervention to address it, training the parents to conduct the intervention consistently and correctly, monitoring the patient’s progress, and adjusting the plan, as needed.In this assignment, imagine that you and Mrs. Rivera have identified one symptom of ASD she would most like to work on with Cody. An example would be that he does not make eye contact when interacting with others. (You can select whatever ASD symptom you choose to work on.)Describe some ideas that will help Mrs. Rivera to address that behavior. Your ideas must be based on related research and should include the following:Provide a specific, observable description of the symptomatic behavior. Indicate a clear statement of your specific goals. Explain your research-based strategy, with specifics about who, how, when, where, and why for each of the ideas. Determine how you and Mrs. Rivera might be able to monitor Cody’s progress and adjust as needed.Support your assignment with at least three scholarly resources. In addition to these specified resources, other appropriate scholarly resources, including seminal articles, may be included.Length: 5-7 pages, not including title and reference pagesYour assignment should demonstrate thoughtful consideration of the ideas and concepts presented in the course by providing new thoughts and insights relating directly to this topic. Your response should reflect scholarly writing and current APA standards. Be sure to adhere to Northcentral University’s Academic Integrity Policy.Upload your document, and then click the Submit to Dropbox button.
Week 6 Autism Spectrum Assignment (NCU)

Mathematics homework help

Mathematics homework help. This is a paper that focuses on the high incidence of seasonal part-time and casual employment of a sector. The paper also provides information on how to access the e-book assignment.,High incidence of seasonal part-time and casual employment of a sector,In the form of an essay, there are three areas to discuss:, 1. To what extent do you agree with the statement that the sector is characterized by a high incidence of seasonal, part-time and casual employment?, • Explore the benfits/issues in those sectors in the literature and justify your arguments/agreements with references!,2. In contrast to the statement, also identify one or two full-time, permanent jobs in tourism, hospitality or event management recently advertised in Australia, which might be of interest to you in the future. Briefly summarise, the type of qualifications and experience required for those positions., • What would be your ideal job in your chosen sector of the industry? Look up the add, what essential qualification and skills are for that job?,3. To secure such a position, describe the career related activities a student like you could engage in while you are studying at Latrobe to secure a similar job in the future on completion of your degree., • How can you engage now – how can you prepare yourself to get there!,,Essay:, To provide information for your essay students should log into the LMS site for this subject and also look at the e-book in the Assessment section, which is, entitled “Career Opportunities – Resources for Essay”. This e-book provides a variety of resources related to the various careers within the tourism, hospitality and events sectors.,Unusually for a university essay, students are permitted to use the term “I” in this essay sparingly and only when relating to career section. However, in all other aspects of the essay students should use formal language. Lastly, should avoid using casual language such as slang and abbreviations. For example, instead of saying, “don’t” use “do not”; instead of saying, “wouldn’t,” say “would not”, etc.,Attachments,Click Here To Download,Mathematics homework help

Analysis of Global Electricity Generation

help writing Introduction Energy is a vital component of economic, infrastructural development in any country. It is regarded as the primary input required to sustain an economy. Globally, countries with efficient and reliable sources of energy are more advanced in per capita consumption; thus, their economies are growing faster, BGR (2014). On the other hand, countries with non-reliable and non-efficient energy sources are lagging in per capita consumption and, consequently, economic development. There are two different resources of electric power: Conventional Resources: These resources are also known as non-renewable resources because they are available in limited quantities. Non-conventional Resources: These refer to natural resources that are pollution-free and can be used to produce clean electricity without wastage. They include solar, wind, hydro biomass, and geothermal. The graph below shows the global electricity generation by source. This graph reveals that fossil-based natural energy sources (conventional) are the most prevalent in energy production as compared to renewable sources whose consumption is marginal. World Electricity Production by Source 2019 I. Conventional Resources A- Coal History of Coal Coal is the most abundant fuel among the conventional/ fossil resources and has the longest and indeed the most varied history. It has been used for heating since the pre-historic period of the caveman. Archeological evidence shows that the Romans in England used Coal during the third century, 100-200AD. The heating potential of coal was discovered in 1700. In the United States, Coal was found by explorers in 1673, NEED (2018). The industrial revolution played a significant role in expanding the use of coal. A man by the name James Watt invented the first steam engine that used coal in the 1800s. This was followed by the invention of steam-powered ships and rails that relied on coal for power. Weapon factories started to use coal to manufacture weapons used during the civil war. Coal was also used in the manufacturing of steal by 1875, NEED (2018). The burning of coal for electricity generation is relatively new in the long history of fuel. It was first used in the 1880s to generate electricity for home and factory consumption. It officially became the primary fuel used to generate electricity in the U.S. in 1961. Today coal is widely used to generate electricity in the U.S. Converting Coal into Electricity According to the U.S. Department of Energy (2019), 90% of coal mined in the USA is used to generate electricity. Up to 50% of the electricity consumed in the USA is generated from coal. Coal generated electricity is the electric power made from the energy stored in coal. Most of Coal energy is derived from carbon produced from the ancient plant material, released as coal is burned. The diagram below shows an outlay of a coal plant and the steps taken to generate electricity from coal. Source: (2019) The process of generating electricity from coal is seven steps and like that used to convert natural gas and oil into electricity, US Department of Energy (2019): STEP I: A machine, pulverizer, is used to grind coal into the finest powder. STEP II: The coal powder is mixed with hot air for it to burn efficiently. The mixture is moved into the furnace. STEP III: The burning coal is used to heat water in a boiler to create steam. STEP IV: The steam released from the boiler is used to spin turbines. This transforms the heat energy from the burning coal into mechanical energy that spins the turbines. STEP V: The spinning turbine powers a generator to turn the mechanical energy into electric energy. STEP VI: A condenser is used to cool the steam moving through the turbine then turns back into the water. STEP VII: The water is returned into the boiler and the cycle begins. Emerging Economic, Environmental and Technological Issues around Coal Coal is a globe’s major source of energy. The aggregate global consumption currently stands at 7,700 Mt which is shared with other sectors such as iron, cement and liquid fuel manufacturing. It accounts for 40 percent of the world’s electricity consumption. This is projected to increase significantly over the next 30 years. World Energy Council, WEC (2016) regard Coal as the world’s second most important source of electric energy. Accounting for30% of the globe’s primary power consumption, hard and brown (lignite) types of coal are the leading sources of electricity generation that produces the 40% global electricity, WEC (2019). Coal is considered as an indigenous source of energy. This means that coal mined within a country are used for the generation of electric power within the same country to ensure the security of supply. However, the overshot in the supply and fluctuation of natural gas prices has negatively impacted the coal industry. 75 % of the total global production of coal leverages subcritical technology. According to NEED (2018), this technology achieves a high level of efficiency in electricity production. This is because it consumes less coal while resulting in reduced emission of carbon dioxide (CO2). They add that CO2 emission may be reduced by around 23% per unit generated of electricity, replacing the current ultra-supercritical technology, IEA (2018). Besides improved efficiency in power production, the implementation of a new technology referred to as Capture Utilization and Storage (CCUS) is one of the strategies being used in power generation plants to reduce carbon emission and climate change. The global consumption of Coal increased by 64% between 2000 to 2014, making it the fastest-growing fuel in use. Strengths of Coal in Electricity Generation It is available in abundant supply; it is estimated that the U.S. has enough Coal to last over 400 years. Coal has a high load factor; it has potential for continuous power. It offers low capital investment. The new technologies such as carbon capture and storage can reduce potential emissions. Coal can be converted into gases or liquid but still be used as if it were raw. Coal can be used with renewable sources, such as incorporating biomass. It is a full-time source of electricity. Weaknesses of Coal in Electricity Generation It is not a renewable resource thus the reserves will be depleted at some point. It contains a high level of carbon dioxide per Thermal Unit that pollutes the environment. Electricity generation from coal can create a high level of radiation. Coal plant emissions are linked to health concerns. Coal mining causes relocation of populations and disruption of normal lives. B- Natural Gas History of natural Gas Natural gas was first discovered in America in 1626 by French explorers who found the native people were igniting gasses around Lake Erie, NEED (2018). The first well was dug in 1659 by Colonel Edwin Drake who found oil and natural gas 69 feet below the surface. The first commercial use of natural gas occurred in England in 1785. Baltimore, Maryland, was the first city in the U.S. to produce power from natural gas to generate electricity, illuminating their homes. Robert Bunsen pioneered the use of natural gas in heating. The first electricity generated from natural gas was in 1939 in Neuchâtel, Switzerland. In North America, a power plant in Port Mann, British Columbia launched the first 100MW natural gas-powered power plant, NEED (2018). Since then, generative capacity of electricity from natural gas has grown exponentially. How Electricity is generated from Natural GAS, NEED (2018) The process of generating electricity from natural gas starts by transporting the natural gas underground to power plants through pipes. The power plant then burns the natural gas to boil water that becomes steam. The steam is used to spin the blades of a turbine connected to a generator. The generator spins the magnets that in turn generate the electricity. The power generated passes through the power plants to power stations then to the final consumers. This process is less like the process used in generating electricity from other fossil sources such as coal and oil. The diagram below demonstrates the process of electricity generation from natural gasses. Source: Strengths of Natural Gas Natural gas is more environmentally friendly compared to the other fossil fuels as it burns cleaner. It’s safer and easier to store in comparison to oil and coal. Natural gas is less expensive than other fossil fuels. The supply of natural gas is plentiful hence it can be relied upon in the long run. Weaknesses of Natural Gas Natural gas is combustible hence must be handled with care. Natural gas is non-renewable. Changing Prices continuously. Emerging Economic, Environmental and Technological Issues around Natural Gas Natural gas is argued to be the only fossil based electric power source whose consumption is set to grow and help the world to transition to clean and affordable power. It is the second source of energy in generation of power, accounting for 22%, IEA (2018). There have been advances in technology that has led to affordability and efficiency in the supply of natural gas. However, the demand of natural gas in the future is uncertain. This can be reversed by formulating new policies and expanding the existing infrastructure and bridging the regulatory gaps both at the national and international levels through regional economic blocks. Moving into the future, there will be a decline in the demand for natural gas imported from Asia. This will be prompted by the need for importing nations such as the USA, China and Japan, which are major industrialized countries to reduce the impact of unstable commodity market in order to stabilize prices. The volatility of the Gulf region where the bulk of the natural gas is imported from is such that the prices will remain unpredictable. One of the most significant technological milestones in the exploitation of natural gas is the development on how unconventional gas resources are drilled. There have been significant changes in the upstream operations, leading to an improvement in supply. Here has been a fall in demand for natural gas in the Asian market and an increase in supply in the Asian and North American markets, leading to oversupply of the product in the global market. This has significantly led to decline in prices. One of the objectives of United Nations Climate Change Conference (2015), COP21 is to reduce the consumption of carbon intensive fuels in electric power generation in the fast-growing economies. This means that natural gas will play a displacing role in helping to achieve this objective. C- Oil History of Oil Oil was first discovered by the Chinese in 600 B.C and transported in pipelines made of bamboo, NEED (2018). However, the new oil economy was heralded by Colonel Drake and in 1859 in Pennsylvania. Oil was also discovered in Spindletop, Texas in 1901. The modern history of oil begun in the 19th century when paraffin was fast refined from crude oil by British Chemist James Young in 1847. With the technological advancements in the 20th century, oil became the most preferred source of energy. This was driven by the need to use oil in generating electricity and for transportation. Generating Electricity from Oil Like the other fossil sources, oil is mined from the underground reservoirs. The liquid oil is the product that is transported through pipes to the refineries. From there, oil is refined into several products namely: gasoline, diesel, kerosene, liquefied petroleum and other residuals such as bitumen. Three different technologies are used to convert oil into electricity: Conventional Steam: like in the case of coal and natural gas, the oil is burned. It heats the water that forms steam that in turn generates electricity. Combined cycle technology: This involve burning oil in a combustion turbine then using the heated exhaust gasses to generate power. They are used for heating water to create steam for generating electricity. Combustion Turbine: this entails burning oil under pressure to produce hot exhaust gasses which are used to spin turbines to produce electricity. The following diagram shows a typical thermal power station using oil to produce electricity: Source: Emerging Economic, Environmental and Technological Issues around Nuclear Energy Oil is the leading source of energy in the world accounting for around 33% of the total global consumption. At a time when there is concern about the continuous exploitation of oil for fuel and production of electricity, several structural changes have been initiated within the industry. Traditionally, the gulf region under the OPEC group has been known to be the major source of oil. However, other countries outside OPEC are also emerging as oil producers. Power generators are adopting more efficient power generation options. Despite Of the industry being characterised by price fluctuations, the prospects of the industry remain strong. However, the political instability in the gulf region and the recent destruction of oil wells in Saudi Arabia by the suspected Iran forces raised concern about the prospects of the industry. Strengths of Oil Oil is available in abundance. Oil is easy to transport and use. Oil has high heating value. Weaknesses of Oil Oil is a non-renewable resource. Burning oil leads to carbon emission. The mining process is not efficient hence leading to waste that endangers the environment. Transportation leads to spill, risking aquatic life. Oil is highly combustible. D- Nuclear Energy Nuclear power can be described as the use of different nuclear technologies to extract electric power from atomic nuclei through controlled nuclear reactions. It is one of the fastest sources of electricity generation. The advancement of nuclear power is concentrated in a few countries notably: China, Korea, India and Russia. They together own 40 out of the total 65 that were under construction reactors according to data from IAEA. The global capacity stood at 2563 TWh as at 2018, IEA (2018). This generated 10% of the global electricity needs. Currently, there are a total of 450 nuclear power reactors globally. History of Nuclear Energy The diagram below shows the chronology of nuclear energy from 1942: Source: The graph below shows the trajectory of global nuclear electricity production from 1970 to 2018. It indicates the increasing significance of nuclear energy in the electric power matrix. How Nuclear Energy is generated (World Energy Report, 2015) Nuclear energy facilities utilise technology referred to as nuclear fission. In this process, heavy atomic nuclei split apart to form lighter ones, releasing energy at the same time, NEED (2018). Certain isotopes (most notably uraium-235, which is naturally occurring) are fissile, which means that they can be made to undergo fission when bombarded with neutrons. The fission process also produces neutrons, so that a chain reaction can be set up wherein each fission event can initiate another. Nuclear reactors then are designed to maintain this chain reaction in a controlled manner. Fission takes place in the nuclear fuel while the rest of the reactor is designed to convert the thermal energy produced into electricity and to make sure that none of the radioactive material created during the process is released into the environment. Nuclear power plants are thermal plants, like gas or coal. They heat water to steam to turn turbines. In the case of medical and research reactors, some of the radioactive isotopes created via fission are the product of interest. These can be used for medical and industrial purposes. The diagram below shows a typical layout on a nuclear energy plant: SOURCE: Emerging Economic, Environmental and Technological Issues around Nuclear Energy Fuel takes a small proportion of the total generation cost of nuclear electricity thus it is favoured as an electricity supply option in many countries. The cost of uranium in electricity generation accounts for only 10% thus the nuclear electricity generators are cushioned against price volatility like in the case of natural gas and oil-based power generation, IEA (2018). The introduction of Generation IV nuclear reactors is promising as it will eliminate limitations on fuel supply in the future. Another technology that has been introduced is nuclear desalination. This technology is considered a viable option that can meet the growing demand for portable water, especially in desert areas where there is limited supply of water. It is projected that fast reactors will be deployed by 2035 in many countries as they have been used in Russia. This coupled with the success of Generation IV will make immense contribution in expanding the capacity of nuclear generated electricity. In comparison in terms of generation capacity, nuclear power plants are not affected by high cycle fatigue, as compared to fossil-based plants or in non-conventional plants such as wind powered plants whose thermal parameters are limited. Spare parts are also available to repaid aging plants. Strengths and Weaknesses of Nuclear Energy Strengths Weaknesses It produces no polluting gases. Waste is radioactive and safe disposal is expensive and challenging. Nuclear stations do not lead to emission of gasses that lead to global warming. Waste from thermal pollution chocks and affect marine animals. Fuel costs are low. Can cause catastrophic large-scale accidents. High technology research required. p High cost of building and safely decommissioning. II. Non-Conventional Resources A- Hydro-Power History of Hydro-power The first hydroelectric power project took place in 1878 in Northumberland, England, IRENA (2018). The electricity produced in this project only powered one lamp, in 1882; the first hydroelectric project for mass distribution was formed in Appleton Wisconsin, American. The electricity produced was distributed to private homes and light industries. By1892, several hydropower stations were launched in the USA. By the turn of the new century, it has come to be recognized as an important source of electricity at a global scale. How Hydroelectric Power is generated Hydropower involves using water to power turbines to make electricity. Water is constantly moved through a huge global cycle. It uses water as fuel that is neither used nor reduced in the process as the water cycle is endless. There are several hydroelectric facilities that are powered by Kinetic energy of flowing water moving downstream. Turbines and generators are used to convert the energy into electricity which in turn is fed into the grid. The following is an outlay of a hydroelectric power station Source: There are three types of hydroelectric power plants: Impoundment facility: this is a large hydropower system that uses a dam to store water in a reservoir. The water released flow through a turbine, spinning it and in turn powers a generator that produces electricity. The water can be released or maintained in the reservoir. Diversion Facility: this facility channels a portion of a river through a canal thus not requiring the use of a dam. Pumped Storage Facility: this works like a battery. It pumps water uphill through a reservoir at a high elevation from a second reservoir at low elevation. The water is then released during dry seasons and used to generate electricity. Emerging Economic, Environmental and Technological Issues around Hydroelectricity Hydropower is now the largest source of renewable energy in the world that has been on increase in the past 5 decades. Currently, there have been limited developments in hydropower development because of the high initial fixed development required. The demand for large tracks of land for hydropower infrastructure development has led to conflict among communities a many people are asked to relocate to create room for development. Due to the large-scale engineering work required to construct hydro power stations, its impact on the environment cannot be overlooked. However, it is also favoured because it comes with supply of water that benefits communities and households. Hydro power is clean. The energy stored can be used for both base load and the peak time electricity generation. As the leading source of renewable power, it supplies % of the total renewable energy produced. At the end of 2016, there was 1064 GW install capacity with prospects of growth mostly in China, Africa and Latin America with huge unutilized potential for future development, IRENA (2018). There is great synergy between hydro and other power generation technologies thus its role in power generation in the future is expected to grow. This is in addition to the water management benefits that come with it such as flood control, drought mitigation and water for irrigation. Strengths of Hydroelectricity It is a clean source of electricity as it is powered by water thus does not pollute the environment. It relies on water cycle thus is considered a renewable resource. It provides other benefits such as water for domestic use, fishing and recreation. It helps to mitigate on flooding. Weaknesses of hydroelectricity It can impact water quality and flow as water is kept in reservoirs. It requires high initial capital outlay to build the facilities. It leads to dislocation of populations to create land for construction. B- Wind Power History of Wind Power Wind power was used as early as 5000 BC along River Nile and the Persian where it was used to pump water for grinding grain, NEED (2018). Wind power technology was launched in 1,000 AD and it spread to Europe. The first wind mill for electricity generation was launched in Scotland in 1887 by Professor James Blyth of Anderson’s College, Glasgow. In the same year, Professor Charles F. Brush built the first 12kW wind turbine that charged 408 batteries for his home use. This turbine ran for 2 years. The largest wind mill was launched in 1941 during the peak of World War II that produced 1.25 MW of power. This opened doors for other countries to explore wind power generation, leading to constriction of the first commercial wind farm in California in 1980 producing 25.5 GW, NEED (2018). The global wind power installed by 2018 totalled to 591,549 MW, amounting to around 7of global power generation capacity. Denmark is the global leader in wind electricity generation, with 42% of its total electricity supply coming from the natural wind compared to Germany at 13% among other countries. How Electricity is generated from Wind Wind is generated from solar energy. The uneven heating of the earth surface and rotation of the earth causes winds. The flow of wind when harvested by the modern wind turbines are used to generate electricity. Wind power is generated by converting wind into electricity through the use of wind turbines. The wind turbine is designed with three propellers known as rotors. The rotor is attached to a tall tower, about 20 meters high to capture strong winds. The wind turbines capture the wind that makes the rotor to spin. The spin drives a generator that produces electricity. The image below shows an outlay of a wind power generation plant: Source: Emerging Economic, Environmental and Technological Issues around Wind Power The natural wind is also another non-conventional source of electricity. Areas experiencing strong winds have huge potential for electricity generation, especially high-altitude areas. Wind power generation results to zero pollution as there is no burning of fossil fuels to generate electricity. Around 90% of wind power electricity are generated onshore. At the global scale, there are different policy plans that have been initiated to grow the wind electricity capacity to 977 GW by 2030. 905GW of the aggregate projected capacity is expected to be produced onshore while the remaining 72GW are expected to be produced offshore, IRENA (2018). Despite of the developments, there are some limitations that are hindering the successful exploitation and use of solar electricity. The installation, operation and taxation related costs are high while the returns realized are dependent on the available wind resources and the quantity of electricity produced. The feasibility of a wind electricity generation project is Costs include both installation and operation expenditures, where revenue is dependent on wind resources, a turbine’s performance and the quantity of energy produced. For a wind plant, this value is defined by the purchase power rate or a feed-in tariff. This value is calculated based on the price paid to the utility plus the transmission cost to their house, where the price of wind energy depends on how much energy is demanded by residents. Therefore, the feasibility and minimum required speed for a wind turbine to be economically viable is related to how much wind energy is available. The emerging trend within the wind power generation sub-industry shows that major companies are consolidating their efforts as the global market is shifting to Asia. Strengths of Wind Power It produces clean energy with zero carbon emission. Wind power is a renewable source. One turbine can be enough to generate enough power for a household. It has a small footprint as the turbines consume small space. It can be used in remote locations. Weaknesses of Wind Power Generation can be affected by fluctuation of wind. The cost of installation is high. Wind mills pose a threat to birds. The turbines create visual and sound pollution. C- Solar Energy Solar energy is harvested by converting solar directly into electric energy. It is an important source of all the non-conventional sources; however, its use is still low despite being available in abundance. The current global capacity of solar powered electricity exceeded 500 GW by the end of 2018, accounting for only 2.8% of the global electricity demand, IEA (2018). Investment in solar energy has been significant in areas with less solar resources like Europe than in areas with high solar resources such as in Africa and Asia. Growth in solar electricity is affected by the existing electricity infrastructure, particularly in countries with young markets. The History of Solar Energy The history of solar energy can be traced to 1873 when the first photovoltaic system was built by Edmond Becquerel’s, NEED (2018). The diagram below shows the stages and milestones of solar energy. Source: The diagram demonstrates that scientists played an important role in undertaking research and development that eventually led to the high level of efficiency and development of highly efficient photovoltaic cells. The work of these scientists opened the door for further development and experimentation, eventually bringing us to where we are today in the level of efficiency offered by modern photovoltaic cells. How Electricity is generated from solar energy The first step is to install the solar panels that collect sunlight. Every solar panel has photovoltaic cells (PV) that are what the panels use to collect sunlight and transform it into energy. The solar panel converts the DC electricity they receive into power that can be used. This step is followed by an inverter that converts the DC electricity to AC. The solar panels then push the AC energy into the net meter that determines the amount of energy generated and push into the grid. The process is demonstrated in the diagram below: Source: Emerging Economic, Environmental and Technological Issues around SOLAR Energy The cost of solar power has been on the decline while there has been emergence of new markets in the developing countries. Most governments have been giving incentives and formulating policies. There has also been an oversupply of installation components, which coupled with technological advancements has led to reduction in the cost of solar electricity production. There has been aggressive Research and Development in solar electricity penetration that has yielded to innovations such as Perovskite3 cells which is about to be launched commercially. Power conversion efficiency of PV cells has also improved, IRENA (2018). Concentrated photovoltaic (CPV) technology will also lead to more efficiency. Regulators are also scaling up efforts to protect the environment from solar PV damage. Controlling the entire lifecycle of solar electricity infrastructure, including disposal and recycling should be factored in to ensure that the infrastructure reaches the end of their lifespan and avoid e-waste disposal into the environment. Several innovations have been witnessed in the past. There has been integration of solar panels in roofing of homes and industrial parks, in addition to development of floating solar farms in oceans and lakes. Source: Strengths and Weaknesses of Solar Power Strengths of Solar Energy Weaknesses of Solar Energy It is a renewable energy resource High cost of installation It reduces electricity bills Solar is weather dependent It can be applied diversely Energy storage is expensive The cost of maintaining the infrastructure is low Solar panels and batteries consume more space D- Geothermal Energy Geothermal is a form of thermal energy that is generated and stored in the earth. It is considered as one of the renewable and clean forms of energy whose generation and consumption is gathering pace globally. History of Geothermal Electricity There was primitive of geothermal energy by the Roans in the 1st century. A breakthrough happened in 1904 when the world’s first ever thermal generator was tested in Italy that produced enough power to light bulbs, IRENA (2018). John D. Grant in 1922 launched the world’s second geothermal plant that produced 250 kW of electricity used to power street lights and households. In 1958, New Zealand launched the largest geothermal power plant followed by the US in 196s that launched a new 11 MW plant. Over the years, countries such as Mexico, Philippines, Kenya and Iceland have launched various power pants, IRENA (2018). How geothermal electricity is generated Geothermal power plants use steam to produce electricity. The steam comes from reservoirs of hot water found a few miles or more below the earth’s surface. The steam rotates a turbine that activates a generator, which produces electricity. There are three types of geothermal power plants: dry steam, flash steam, and binary cycle. The diagram below shows a typical geothermal power plant: Source: Emerging Economic, Environmental and Technological Issues around Geothermal Electricity Geothermal power contributes a marginal proportion of the globe’s primary energy consumption. Electricity generation, geothermal produces less than 1% of the world’s output, IRENA (2018). There were 315 MW of new geothermal power capacity installed in 2015. This raised the total capacity to 13.2 GW. Turkey generated half of the new global capacity additions, followed by the US, Mexico, Kenya, Japan, and Germany. In terms of direct use of geothermal heat, the countries with the most significant utilization, accounting for roughly 70% of direct geothermal in 2015, are China, Turkey, Iceland, Japan, Hungary, the U.S., and New Zealand. The earth’s natural heat reserves are immense. The estimated stored energy down to 3 km within the continental crust is roughly 43 x106 EJ, which is considerably higher than the world’s total primary energy consumption, IRENA 92018). Geographically, 72% of installed generation capacity resides along tectonic plate boundaries or hot spot features of the Pacific Rim disproportional percentage of installed generation capacity rate found in island nations at 43%), providing valuable source of power generation a full spectrum of conditions. The greenhouse gasses trapped within the rocks released through geothermal wells are low in energy units in comparison to fossil sources. The cost of electricity generated from geothermal sources involves low running costs, considered to the fossil-based sources. This has led to an increase in exploitation of geothermal electricity. The contribution of geothermal energy accounting for only less than 1% of the current aggregate global output which is 13.2 GW by 2015, IRENA (2018). The cost of producing geothermal electricity is high relative to other sources. The high cost of production is consumed in installation and longer period consumed in development of infrastructure in comparison to other non-conventional sources like solar and wind thus development of geothermal electricity in most countries is reliant on government initiatives to compete against natural gas and other renewable sources. The legal and regulatory environments also play major role in the development on geothermal electricity generation, particularly laws torching on conservation. The pace of development is expected to be rapid because of the concerns about climate change and the increasing efforts to eliminate carbon emission in the energy sector. Strengths and Weaknesses of Geothermal Energy Strengths Weaknesses It is environmentally friendly It can cause earthquakes The cost of maintenance is low It requires large land It is highly efficient It can only be used in particular places It is highly sustainable The cost of installation is high Reduces noise pollution It is renewable source Global Consumption of Conventional and Non-Conventional Sources of Energy Despite of global energy electricity consumption tilting in favour of non-conventional energy sources, the table below shows that conventional sources will still be favoured moving into the future. Source: Since the beginning of the twenty first century, there has been an increase in human population and industrial activity leading to increase in demand for energy resources. This has led to over-exploitation of the most commonly used energy sources such as fossil and coal, raising concern that these resources may soon be depleted. Renewable energy was considered as the most practical solution to the looming energy crisis. In this regard, a lot of effort and resources have been channeled towards investing in renewable energy in all parts of the world. According IEA (2018), global share of renewable in meeting global energy demand will grow by one-fifth in the next five years to 12.4% by 2023.This reflects significant achievement toward developing this type of energy. However, despite the numerous efforts to come up with practical technologies on renewable energy, the process of getting people and institutions to switch from the consumption of non-renewable energy sources to renewable energy has been slow and still faces major obstacles especially in developing nations. This paper focuses on identifying and explaining why many nations are stuck to the consumption of non-renewable energy resources and the challenges facing adoption of renewable energy. Some of barriers have been attributed to: overreliance on fossil-based fuels, weak regulations, technology, marketing, financial, ecological and socio-cultural barriers, IRENA (2017). Having recognized the importance of renewable energy, all the parties concerned with the promotion of renewable energy such as: government institutions, research institutions, business institutions and other policy makers should work together towards sealing the gaps affecting renewable energy development, Höhne et al. (2016). More resources should be invested in research and developing infrastructure for renewable energy. Strong regulations should be put in place and enforced to ensure that all the gains made are not eroded and the objectives set by each country are achieved. Transition from Conventional to Non-conventional Electricity Generation There is significant transition in the sector from conventional to non-conventional sources informed by the pursuit of clean energy. However, the rate of rate of transition to non-conventional sources is much slower to create significant change that can lead to reduced emission targets. The challenges affecting the transition include: The public have not fully embraced the non-conventional sources. Even where there are significant natural resources such as abundant sunlight and strong winds that can generate enough power, the consumers still lean towards the conventional sources which are supplied by utility companies. There is instability in the prices of commodity and power. This leads to uncertainty and high risks for investors because of the high initial investment required and long led time before the projects can break-even. There is lack of diversification and transition models nationally and internationally thus making it difficult for companies relying on conventional sources to transition. While incentives offered by the governments and international development partners have created exponential gains in exploitation of non-conventional energy in some countries, such incentives have been on the decline hence the companies are becoming unviable and unsustainable. For example, some investments may slip from profitability to loss making if the government withdraws tax holidays and infrastructural supports initiated to promote production and consumption of clean energy. The rare earth resources that are used in renewable energies may lead to dependencies along the value chain thus may lead to barriers in the future growth prospects. Nowadays, there is slow change. However, moving forward, technology may change a lot quickly due to increased investment in Research and Development. The regulators are not adequately prepared to deal with the changes thus it may become a barrier. The liberalized markets may be overstretched to their limits as the low cost of generation can be perceived to offer the highest value in the short term. Conclusion The period of transition has been characterised by some emerging issues. There have been concerted efforts by countries, through initiatives such as COP21 agreement; increase in demand for electricity in countries like China and India; increase in demand for clean energy and increase in the demand for oil and gas. It is worth noting that whereas there has been an increase in the demand for renewable energy, there has also been an increase in the demand for oil and gas. While the conventional sources were deemed expensive as their prices increased over the years, there have been decline in the price of oil and gas resources. New technologies have also played a role in reducing carbon emission from fossil sources exploitation. In addition to this, there has been an increase in community ownership of sources and cooperation within the sector to create synergies. References BGR, (2014). Energy Study, Reserves, resources and availability of energy resources,;jsessionid=34994D9251AE00977EBFF6FFF1240FC6.1_cid321?__blob=publicationFile

The major point in Lies My Teacher Told Me: Everything Your American History Textbook Got Wrong Analytical Essay

The book criticizes erroneous approach of the majority of textbooks in history There can be no surprise that the school is the place which forms the basis for the development of critical thinking of many people. Children get their basic knowledge in the most important disciplines. One of the most important disciplines is history: there is even the famous saying that people / nations who do not know their past are doomed to repeat it. Of course, American scholars understands the importance of students’ understanding of past events, however, some academics claim that there are too many controversies in history that are not revealed in textbooks on history which can produce negative consequences for the development of the entire nation. One of such academics is James Loewen who considers the controversies of history education in the USA in his famous Lies My Teacher Told Me: Everything Your American History Textbook Got Wrong. The entire book is permeated with the idea that students in schools are taught “refined” history which distorts their perception of reality. Loewen states that the vast majority of textbooks provide only one-faceted opinion, they present the “Disney version of history” omitting controversies and blemishes in the American history (Loewen 27). He also states that such erroneous approach to history education can lead to wrong passive position of people who believe in their heroic country which had no difficulties throughout its history. The role of text-books in education and their drawbacks Loewen points out that the majority of people in the USA know the history of their country from the school course and the textbooks. He states that many textbooks have few references to secondary sources. Thus, Loewen stresses that there is a large gap between the knowledge of historians and the amount of facts the rest of Americans are taught (Loewen 267). Moreover, Loewen provides the results of the research held in 1990 which revealed that 40% of teachers (who participated in the research) had a B.A. or M.A. (Loewen 280). This situation only contributes to the fact that students get information about the history from their textbooks only. Of course, not only textbook authors but teachers as well try to omit any controversies in history. It is easier to enumerate particular names, dates and events without discussing various backgrounds, downsides and impacts on the further development. Thus, textbooks authors pick up some historic events that seem to them heroic or essential and omit many other details associated with these events. Get your 100% original paper on any topic done in as little as 3 hours Learn More Unrevealed Wilson’s blemishes One of such erroneous representation of facts is illustrated by the period of Woodrow Wilson being the President of the USA. According to Loewen numerous textbooks depict this personality as a hero who led glorious policy, but in reality introduced many controversial changes in political and social life of the country (Loewen 25). For instance, Loewen pays a lot of attention to Wilson’s racism and anti-communism (Loewen 25). There is no information in the majority textbooks as for Wilson’s policies in these areas. Numerous textbooks omit mentioning suppression of African-American people. It was Wilson who succeeded in depriving African-Americans from their rights; for instance, even positions in government which were assigned for African-American during Wilson’s presidency were occupied by white Americans. Many textbooks ascribe the witches hunt to Wilson’s government not him, but, in fact, he was a great supporter and initiator of many anti-communism campaigns (Loewen 29). Thus, textbooks in history have created a heroic president instead of a man who made many mistakes, however, at the same time introduced lots of positive changes. Positive example of Lincoln’s development remains unexploited Another good illustration of the wrong representation of historic events which Loewen provides is another American president, Lincoln. Loewen stresses that correct depicting of this remarkable leader can be very useful for the development of analytical skills of students who could learn that politics address every audience in different ways and that it is important to analyze officials’ words rather than take them literally (Loewen 172). Moreover, the “internal struggle” of this man can be a very good example how people can develop under the pressure of circumstances (Loewen 172). Loewen points out that it is essential to provide different points of view instead of trying to create positive image of the country and the government. People should understand that sometimes their government may act inadequately, erroneously. Students should learn about various blemishes in the history of their country to be ready to some controversies in their real life. Social controversies are also unrevealed in textbooks Loewen also mentions that textbooks in history are often produced from the perspective of the upper-class. He states that such sources omit dwelling upon some social issues since a “theory of social justice” can hardly be in line with the data about wealth distribution in the country (Loewen 206). Another disputable question is a depiction of immigrants. As a rule, textbooks in history reveal successful stories of immigrants who became respectable members of society, but they do not dwell upon those difficulties immigrants had to cope with (Loewen 195). According to Nieto Loewen raises very important issues in his book: he stresses the importance of presenting different points of view on the same event or personality (Nieto 44). We will write a custom Essay on The major point in Lies My Teacher Told Me: Everything Your American History Textbook Got Wrong specifically for you! Get your first paper with 15% OFF Learn More The “linear and fixed” representation of events from the perspective of the dominant group makes student think that they are “passive in making any changes” (Nieto 44). Of course, such dangerous perception should be changed. Loewen’s suggestion to problem solution Loewen stresses that students should be able to analyze the historic events carefully and make corresponding conclusions. He suggests a possible way out and states that it can be helpful to include fewer events in textbooks and pay significant attention to discussion of controversies or different points of view on the same event (Loewen 309). Thus students will be able not only to remember some important landmarks in the history, but will understand the background of these events and their impacts on the modern life. Of course, students will have critical perception of the reality and will be able to influence the course of history when it is necessary. The main idea of the book Thus, the main idea Loewen reveals in his book Lies My Teacher Told Me: Everything Your American History Textbook Got Wrong is that students should have the opportunity to consider various points of views and different facets of the same historic event to have the right perception of the past, present and future. Students should know about the controversies of the American history to respond adequately to different events taking place in the contemporary times. Students should know that not only wise government is responsible for the development of their countries: first of all, each person should make the necessary contribution to build a strong and really democratic state. Works Cited Loewen, J. W. Lies My Teacher Told Me: Everything Your American History Textbook Got Wrong. New York: New Press, 1995. Nieto, S. Language, Culture, and Teaching: Critical Perspectives for a New Century. Mahwah, NJ: Lawrence Erlbaum Associates, 2002.

International finance 4

International finance 4.

Covers Chapters 7 and 8 – Homework Assignments General InstructionsChapter 7: (Links to an external site.)Links to an external site.To recognize the relationship between interest rates and the forward (or futures) discount or premium, review here your responses in Chapters 3 and 5. In order to determine if Interest Rate Parity (IRP) exists between the U.S. and Japan NOW, you will need to compare the current size of the forward-spot differential, to the size of the current interest rate differential between the U.S. and Japan, as shown in the examples we covered in the Chapter 7 lecture video. Question 1 – Use the IRP equation to compare the two differentials mentioned above (that is, show the IRP equation using your data and explain what your results mean). According to interest rate parity, a foreign currency with a higher interest rate should have a discount in its futures price. Does that relationship exist here?Question 2 – If not, do you think that the size of the discrepancy allows for Covered Interest Arbitrage (CIA), or is it due to transactions costs and data limitations? Make a choice and Explain your rationale.Chapter 8:Go to to assess recent changes in the Japanese inflation rate (include a graph of current trends from this site if you like). Compare the current level of inflation in the Japan to that of the U.S. In order to determine if Purchasing Power Parity (PPP) exists between the U.S. and Japan NOW, you will need to compare the current size of the forward-spot differential, to the size of the current inflation rate differential between the U.S. and Japan.Question 3 – Use the PPP equation to compare the two differentials mentioned above (that is, show the PPP equation using your data and explain what your results mean). According to purchasing power parity, a foreign currency with a higher inflation rate should have a discount in its futures price. Does that relationship exist here?
International finance 4